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Abstract Specific object recognition method with the nearest neighbor search of local features needs an immense

of memory storage to store them for distance calculation since the number of local features is very large. A way to

solve this problem is to skip the distance calculation. In this paper, we propose a memory reduction method with a

Bloomier filter which is far memory efficient than hash tables. From the experiments with 55 3D objects and 5,000

planar objects, the proposed method was successful to reduce the required memory for specific object recognition

compared with the method with a hash table.

Key words Bloomier filter, Bloom filter, Memory reduction, Specific object recognition

1. Introduction

Object recognition is one of attractive tasks in computer

vision or pattern recognition. Many researchers deal with

this theme and their accomplishments help to develop a new

service. For example a camera based information retrieval ser-

vice such as “Google Goggles” [1] is a famous one. The tasks of

object recognition are divided into two categories: generic [2]

and specific [3], [4]. The former is to recognize classes of ob-

jects. On the other hand the latter is to identify object instances.

In this paper, we focus on the latter task, especially the meth-

ods which utilize local features such as PCA-SIFT [5].

Local features are often employed for object recognition be-

cause they have highly discriminative power. Matching be-

tween local features extracted from a query image and images

for the database is one of simple methods for object recogni-

tion. The nearest neighbor search is often utilized for match-

ing. Although even this simple method enables us to achieve

high recognition accuracy, it poses the problem that an im-

mense of memory storage is required to store all of local fea-

tures for distance calculation since they are multidimensional

vectors and hundreds to thousands of them are extracted from

a single image. Some methods to solve this problem have

already been proposed. One of them is based on vector quan-

tized feature vectors called “visual words” [6], [7]. This method

allows us to reduce the amount of memory by reducing the

number of feature vectors stored in the database with the

performance of k-means clustering. However, only a large

number of “visual words” enables us to achieve high accuracy

of recognition [7], [8]. Therefore, the achievement of memory

reduction with this method is very difficult while keeping the

recognition accuracy as high as possible.

A possible approach to solve this problem is to recognize

the objects without distance calculation. From this viewpoint,

a hash-based method has been proposed [9]. In this method,

the similarity of feature vectors is identified not by distance

calculation of them but by checking whether they have same

hash values. The contribution of this method is to reduce the

memory usage dramatically because only the object IDs are

stored in the hash table and there is no need to store feature

vectors for distance calculation. However this method still

has a problem about the amount of memory: although a very

large size of hash table is necessary to improve the discrim-

inative power of feature vectors, most bins of hash table are

empty. Accordingly, there is still a room of improving the

space efficiency of this method.

Our approach to solve this problem is as follows. Our ap-

proach has two key ideas, 1) we utilize a small size of hash

table to reduce the amount of memory, 2) multiple hash func-

tions are employed for identifying the similarity of feature

vectors. From these ideas, we address the problem of mem-

ory usage and control the discriminative power of feature

vectors. From this viewpoint, we propose a memory reduc-

tion method with a Bloomier filter [10]. Bloomier filter is one

of probabilistic data structures and is more space efficient than

hash tables. Similar to hash tables, the Bloomier filter allows

us to check the similarity of feature vectors without distance

calculation of them. The difference between hash tables and



the Bloomier filter is the accuracy of identifying the similar-

ity of feature vectors. Although the accuracy of identification

with the Bloomier filter is lower than that of hash tables, we

utilize the Bloomier filter to reduce the memory usage. In

this paper, we compared the proposed method with the con-

ventional method with a hash table by using planar and 3D

specific objects.

2. Conventional Method Based on a Hash Ta-
ble

In this section, we explain a conventional method with a

hash table [9]. This method is a base of the proposed method.

2. 1 Database Construction

First, we explain the database construction process of the

conventional method. The conventional method employs fea-

ture vectors calculated by PCA-SIFT [5]. The number of di-

mensions of feature vectors is 36. Let p be an original fea-

ture vector p= (p1,p2, . . . ,p36) extracted from a “model image”

which is the image for database construction. First, in or-

der to index p in the hash table, we convert it into its binary

representation as a bit vector u = (u1,u2, . . . ,ud) using first d

dimensions of p as follows:

u j =

1 if p j >= 0

0 otherwise
(1)

Next the following hash function

Hindex =

 d∑
j=1

u j2( j−1)

 mod Hsize (2)

where Hsize is the size of the hash table is applied in order to

obtain the hash value of p. Then only ID of the object from

which p is extracted is stored in the bin of hash table indicated

by the hash value. If multiple vectors have the same hash

value, we utilize the chaining algorithm to store them in the

hash table. After this process is applied to all feature vectors

extracted from model images, if the length of the chain ex-

ceeds the threshold c, we delete all entries with the same hash

value. This is the strategy called “stopword elimination”.

2. 2 Object Recognition

Next, we introduce the object recognition process of the

conventional method. The most important step of this pro-

cess is to retrieve the feature vectors having the same hash

value which is obtained from a query vector q. Recall that a

feature vector is converted into a bit vector. Unfortunately,

since variation of a query vector may change its bit vector, the

hash value calculated from p close to q might not be obtained.

To solve this problem, in [9], a query feature vector having

the values close to threshold of 0 for binarization of the j-th

dimension can be converted into bit vectors different from

its original one. This conventional method simply employs

the threshold of error range e (e.g. 200 in our experiments)

as a parameter for generating different bit vectors. For the

dimension j such that |q j| <= e, the other bit value u′j = 1−u j

is also utilized for recognition process. Note that unlimited

application of this strategy increases the expanded bit vectors

exponentially. Therefore, in order to avoid this, the conven-

tional method utilizes the limit b of the number of dimensions

for the application. If the number of dimensions that satisfies

the threshold e exceeds the limit b, those with larger indices

are adopted up to the limit.

Next, the conventional method simply retrieves the object

IDs from the hash table with the set of bit vectors calculated by

the above strategy. Then we simply vote the objects. Finally,

the object having the maximum number of votes is regarded

as the recognition result.

2. 3 Problem of the Conventional Method

In the conventional method, a large size of hash table is

necessary to achieve high accuracy. In [9], since the hash size

Hsize = 2d is utilized, the parameter d controls the size of hash

table. Although a larger d allows us to achieve high accuracy

of recognition, we need more memory space for the hash ta-

ble. Moreover, it causes the problem that most bins of hash

table are empty. In the preliminary experiment with a hash

table whose size is Hsize = 2d and 10 million feature vectors

calculated by PCA-SIFT, more than 65% bins of the hash ta-

ble with d = 24 and more than 96% of them with d = 28 were

empty. From this preliminary experiment, we confirmed that

there was still a room of improving the space efficiency of the

conventional method.

To solve this problem, we utilize a small size of hash table

to reduce the memory usage and multiple hash functions to

control the discriminative power of feature vectors. From this

viewpoint, we propose a memory reduction method by using

the Bloomier filter.

3. Bloom and Bloomier Filters

In this section, we explain the Bloomier filter [10] and the

Bloom filter [11] which is a basic technology of the Bloomier

filter.

3. 1 Bloom Filter

The Bloom filter is a space efficient probabilistic data struc-

ture. This is a bit array of m bits. In the following, we call m

as “Table Size”. The Bloom filter is used to memorize whether

an element is a member of dataset and has a risk of false posi-

tives which are a type of error that an elements is erroneously

recognized as a member of dataset.

The storage process of the Bloom filter is as follows. First, a

bit array of m bits which are all set to 0 is prepared as shown

in Fig. 1. Next, an element is converted into k hash values by
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Figure 1 Overview of the storage process of the Bloom filter.

using k different hash functions. These hash values are inte-

gers ranging from 1 to m and each hash value indicates one of

the m array positions. Then the bits at all positions indicated

by hash values are set to 1. In the retrieval process, feed the

query element to the k hash functions to determine the k array

positions. The query element is regarded as a member of the

dataset if and only if all bits at these positions are 1. In this

process, there is the case that all bits happen to be 1 though the

query element is not actually a member of the dataset. This

is because all bits have accidentally been set to 1 during the

storage of some other elements in the dataset. In this case, the

false positive occurs.

If we can construct hash functions which convert an element

into an integer indicating one of m array positions, the Bloom

filter can store elements of all data types. In this research, we

utilize feature vectors as elements for the Bloom filter and the

dataset for the Bloom filter means the object database.

3. 2 Bloomier Filter

The Bloomier filter is an associative array which can asso-

ciate a value with a feature vector and is composed of mul-

tiple Bloom filters. Because of the effect of false positive in

the Bloom filter, the Bloomier filter also has a problem that

we cannot necessarily obtain the correct associated value. Let

us explain how to associate a value with a feature vector by

using the following example. Suppose the values associated

by the Bloomier filter are simply “0” and “1”. In this case, we

prepare a pair of Bloom filters B(0) and B(1). Then the Bloom

filter B(0) store the feature vectors whose associated value is

“0”, and the Bloom filter B(1) store those whose associated

value is “1”. In the estimating process, we check both Bloom

filters in order to decide the value associated with a query

feature vector. If the query feature vector is contained in B(0)

and not in B(1), we consider the probability that the associated

value is 0 is high and vice versa.

In this research, we utilize the Bloomier filter in order to

associate object IDs. Suppose an object ID is represented by ν

bits, in other words, object ID is converted into bit ID, which

is a binary representation of an object ID, we prepare the

Bloomier filter consisting of 2ν Bloom filters. In other words,

we distinguish 2ν objects with the above Bloomier filter.

4. Proposed Method

We propose a specific object recognition method using the

Bloomier filter. Like the conventional method mentioned

above, the approach of this method for reduction of the mem-

ory usage is to skip the distance calculation for matching fea-

ture vectors. Additionally, this method also stores not the in-

formation of feature vectors for distance calculation but only

the existence of feature vectors in the Bloomier filter. In the

following, we explain the concrete process of the proposed

method.

4. 1 Database Construction

First, let us show how to construct the database with the

Bloomier filter. Like the conventional method, the proposed

method utilizes feature vectors calculated by PCA-SIFT.

Let B(0)
1 ,B

(0)
2 , . . . ,B

(0)
ν be the Bloom filters whose associated

value is 0, and B(1)
1 ,B

(1)
2 , . . . ,B

(1)
ν be the Bloom filters whose

associated value is 1. The Table Size of each Bloom filter is

calculated as:

mτκ = a×nτκ [bit] (3)

where mτκ,nτκ(κ ∈ {1,2, . . . ,n},τ ∈ {0,1}) is the Table Size of Bloom

filter and the total number of feature vectors, whose κ-th bit of

bit ID is τ, respectively. a means how many bits are employed

for storing one feature vector in the Bloom filter.

By using these setting, first, in order to link the feature vec-

tors and object IDs, the object ID is converted into “bit ID”.

For example, suppose that the number of objects stored in

the database is 4. In this case, the object ID 2 is represented

as “10”. Then, since the 1st bit of bit ID is ‘0’ and 2nd bit is

‘1’, the feature vectors extracted from the object whose ID is

2 are stored in the Bloom filter B(0)
1 and B(1)

2 . Similar to the

conventional method, we store not the feature vectors but the

bit vectors which are calculated by Eq.(1). In the proposed

method, 8 hash functions introduced by [12] are utilized for

the storage process of the Bloom filter. Additionally, we em-

ploy the strategy like “stopword elimination”.

4. 2 Object Recognition

Next, we explain the recognition process with the Bloomier

filter. This process is similar to that of the conventional

method. The overview of the process is as follows. First, the

bit ID is obtained by passing the query feature vector through

the Bloomier filter and is converted into the object ID. Then,

we simply vote the object. By iterating this process, finally, the

object having the maximum number of votes is recognized as

the result. In the following, we explain the concrete process

of the proposed method.

First, in order to determine whether the i(i = 1,2, . . . ,n)-th



Figure 2 Examples of 55 3D objects.

bit of bit ID is 0 or 1, we decide the Bloom filters which con-

tain a feature vector p close to a query vector q. Recall that a

feature vector is converted into a bit vector. Therefore the pro-

posed method also has the same problem as the conventional

method. To solve this problem, it also utilizes the strategy of

expanded bit vectors. Then, it checks the Bloom filters with

the set of bit vectors calculated by the above strategy. If only

B(0)
i (B(1)

i ) contains a query bit vector, the i-th bit ID is 0 (1). In

the case that a query bit vector is not contained in both B(0)
i

and B(1)
i , the proposed method discards the query vector. On

the other hand, there is also the case that a query bit vector

is contained in both B(0)
i and B(1)

i . To handle this case, the

proposed method creates both bit IDs whose i-th bit is 0 and 1.

However, unlimited application of this strategy increases the

number of bit IDs exponentially. To solve this problem, the

proposed method employ the limit t of the number of bits for

the application. After this process, the bit IDs are converted

into their object IDs. Then, we vote the objects. Finally, the

objects having the maximum number of votes becomes the

result of recognition.

5. Experiments

We have evaluated the proposed method with the following

two dataset: 55 3D objects and 5,000 planar objects.

5. 1 Experimental Settings

First we explain the dataset of 55 3D objects. We prepared

the dataset by ourselves by taking images of 55 objects. Fig-

ure 2 shows some examples. The images were captured by

rotating each object on a turn table in increments of 5◦ from

frontal view and the above diagonal 15◦ and 30◦ by using

the web camera. The resolution of these images is 640× 480.

In these images, we employed the images in increments of

10◦(0◦,10◦, . . . ,350◦) as model images and the rest images were

utilized as query images. In total 1.2 million feature vectors

were extracted from all model images.

Next, we introduce the dataset of 5,000 planar objects. As

model images, we have prepared in total 5,000 images col-

lected from the web site such as Flickr. Some examples are

shown in Fig. 3. In the experiment of 5,000 planar objects,

we recognize 5,000 planar objects by using 5,000 images. This

means the number of model image per object is 1. The average

Figure 3 Examples of 5,000 planar objects.

(a) 90◦ (b) 75◦

(c) 60◦ (d) Part

Figure 4 Example of query images.

number of feature vectors extracted from an image was about

2,000. The query images were prepared as follows. First, we

chose 500 images from the model images randomly. Then

these were converted into images by taking their pictures in

four different ways as shown in Fig. 4. About 600 feature

vectors were obtained on an average from a query image.

The proposed method was compared to the conventional

method proposed in [9]. Parameters for each method were set

as follows. For both methods, we had three parameters, i.e.,

the limit b of the number of dimensions for expansion of the

original bit vector, the number d of dimensions for generating

bit vectors, and the threshold c which is the number of feature

vectors converted into same bit vector in the proposed method

and is the length of hash chains for deleting. The tested ranges

were as follows. b= 0,1, . . . ,10,c= 1,2, . . . ,10,d= 24,28. We em-

ployed a computer with AMD Opteron8378 2.4GHz CPU and

128GB RAM. In the following results, the processing time in-

dicates the average time required for recognition of a single

query image excluding the time for extracting feature vectors.

5. 2 Experimental Results for 55 3D Objects

First we evaluated the accuracy and the processing time.

We tested the proposed method by combining the parameter

a(a = 8,16,24,32) and t(t = 1,2, . . . ,5) in addition to the param-

eters mentioned above. Figure 5 and 6 show the experimental

results with d = 24 and d = 28, respectively. As you can see

the results, we confirmed that the proposed method needs

the longer processing time compared with the conventional



Table 1 Recognition accuracy, processing time and memory usage for 55 3D objects.

Method c d Other parameters Recognition accuracy[%] Memory usage[MB] Processing time[ms]

Proposed method
7 24 b = 2,e = 200, t = 1 99.21 72 0.50

10 28 b = 3,e = 200, t = 3 99.45 72 0.50

Conventional method
3 24 b = 2,e = 200 99.11 231 0.09

2 28 b = 3,e = 200 99.31 2199 0.12
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Figure 5 Recognition accuracy and processing time for 55 3D objects

(d = 24).
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Figure 6 Recognition accuracy and precessing time for 55 3D objects

(d = 28).

method. This is because the number of process to determine

the object IDs with the proposed method is greater than that

with the conventional method. In the conventional method,

object IDs are decided by accessing the hash table only once.

On the other hand, we need to check 2ν Bloom filters in order

to determine the object IDs. Therefore we have considered

parallel processing is necessary to speed up the decision of

the object IDs.

Next we checked the relationship among the accuracy, pro-

cessing time and memory usage by changing the parameter

c and d. Table 1 shows the experimental results where the

recognition accuracy is the best performance for each d with

both methods. Note that we utilize a = 8 with the proposed

method in this investigation. From the experimental results,

we have confirmed that the proposed method allows us to rec-

ognize the objects with smaller memory usage compared with

the conventional method while keeping the high recognition

rate.
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Figure 7 Recognition accuracy and processing time for 5,000 planar

objects (d = 24).
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Figure 8 Recognition accuracy and processing time for 5,000 planar

objects (d = 28).

5. 3 Experimental Results for 5,000 Planar Objects

We also evaluated the accuracy and the processing time

with 5,000 planar objects. In this experiment, we employed

the same tested range of the parameters as that with the pre-

vious experiments. Figure 7 and 8 show the experimental

results with d = 24 and d = 28, respectively. From Fig. 7, we

confirmed that the proposed method was inferior to the con-

ventional method in the accuracy. This is because bit vectors

with d = 24 caused many false positives that deteriorated the

accuracy of the proposed method. Therefore we confirmed

that the proposed method needs to employ a larger d in order

to recognize more objects while keeping the high recogni-

tion rate. On the other hand, as you can see Fig. 8, we have

obtained the results that are similar to that of the previous

experiments. From these results, we consider that we need

to investigate the value of d that is appropriate for the size of

database in the future work.

Next we investigated the relation among the accuracy, pro-

cessing time and memory usage. In this experiment, we also



Table 2 Recognition accuracy, processing time and memory usage for 5,000 planar objects.

Method c d Other parameters Recognition accuracy[%] Memory usage[MB] Processing time[ms]

Proposed method
10 24 b = 4,e = 200, t = 1 86.50 353 10.94

2 28 b = 6,e = 200, t = 3 94.80 352 5.75

Conventional method
6 24 b = 3,e = 200 91.35 479 0.45

1 28 b = 6,e = 200 94.90 2418 0.59
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Figure 9 Experimental result with 3 methods.

utilized same tested range of parameters as that with the pre-

vious experiments. Table 2 shows the results where the recog-

nition accuracy is the best performance for each d with both

methods. From the experimental results, although the perfor-

mance of the proposed method with d = 24 was worse than

that of the conventional method, the proposed method with

d = 28 enabled us to keep the similar recognition rate as well

as to obtain a higher space efficiency compared with the con-

ventional method.

Additionally, we researched the relation between the recog-

nition accuracy and processing time where the memory us-

age of the conventional method was almost equal to that of

the proposed method with d = 28 by changing the parame-

ter d or hash size. The range of tested parameters for the

proposed method were d = 28 and a = 8,16. On the other

hand, the tested parameters for the conventional method were

d = 24,Hsize = 224 and d = 28,Hsize = 224 −1. We show the ex-

perimental results in Fig. 9. From the experimental results,

although the longer processing time was necessary for the

proposed method compared with the conventional method,

the proposed method allowed us to improve the recognition

accuracy where the same memory usage. Thus, we confirmed

that the proposed method enables us to store the feature vec-

tors effectively compared with the conventional method.

6. Conclusion

In this paper, we have proposed a memory reduction

method for specific object recognition by using the Bloomier

filter. From the experimental results for 55 3D objects, the

proposed method allowed us the recognition rate over 99%

with about 1/3 of the memory usage for the conventional

method. In the experimental results for 5,000 planar objects,

we achieved the recognition rate over 94% with about 3/4 of

the memory usage for the conventional method. From these

results, it can be said that the proposed method is successful

to reduce the required memory for specific object recognition.

Future work is to evaluate the proposed method with more

objects, to speed up the processing time and to logically an-

alyze the relationship among the recognition accuracy, the

processing time and the required memory.
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