
Theoretical Analysis on Pruning Nearest Neighbor
Candidates by Locality Sensitive Hashing

Tomoyuki Mutoh
Graduate School of Engineering

Osaka Prefecture University
1–1 Gakuencho, Naka, Sakai

599–8531 Japan
Email: mutoh@m.cs.osakafu-u.ac.jp

Masakazu Iwamura
Graduate School of Engineering

Osaka Prefecture University
1–1 Gakuencho, Naka, Sakai

599–8531 Japan
Email: masa@cs.osakafu-u.ac.jp

Koichi Kise
Graduate School of Engineering

Osaka Prefecture University
1–1 Gakuencho, Naka, Sakai

599–8531 Japan
Email: kise@cs.osakafu-u.ac.jp

Abstract—Locality Sensitive Hashing (LSH) is one of the most
popular methods of the approximate near neighbor search. In
applications that require the nearest neighbors of queries in a
short time, LSH is sometimes used in pruning of the candidates
of nearest neighbors. While the pruning reduces the processing
time greatly, it also reduces the chances of retrieving the exact
nearest neighbors. However, the pruning of nearest neighbor
candidates using LSH has not been considered theoretically. Thus
in this paper, we investigate the pruning effect by deriving the
formulae of retrieval accuracy and computational cost of distance
calculation for uniformly distributed data. Furthermore, we make
evaluations on the formulae by comparison between simulation
results and the theoretical values.

I. INTRODUCTION

Nearest neighbor search, which finds the closest datum to
the query, is one of basic techniques and widely applicable.
However, due to its massive computational cost, particularly
for large data, it had not been used in real applications. To
alleviate the problem, the approximate near neighbor search
has been proposed. It can greatly reduce computational cost
by allowing wrong search in a certain rate.

Locality Sensitive Hashing (LSH) is one of the most popular
methods of the approximate near neighbor search [1], [2],
[3]. It because time complexity and space complexity are
analytically considered.

Recently, several applications have been developed which
require high-speed retrieval of similar samples to the query
from large amount of stored data.

In the applications, LSH is sometimes used to reduce
processing time [4], [5]. In the methods, the approximate near
neighbors that LSH selects are regarded as the candidates of
nearest neighbors and the distances between the candidates and
the query are calculated to find the exact nearest neighbors.
While the pruning reduces the processing time greatly, it also
reduces the chances of retrieving the exact nearest neighbors.
Although the performance of LSH is analytically considered,
the performance of the pruning of nearest neighbor candidates
using LSH has not considered theoretically. Thus in this paper,
we investigate the pruning effect by deriving the formulae
of retrieval accuracy and computational cost of distance cal-
culation for uniformly distributed data. In order to derive
the formulae, we consider the distance between the nearest

neighbor and the query. Supposing the distance is known, we
construct a hypersphere model and derive the formulae.

II. LOCALITY SENSITIVE HASHING

Locality Sensitive Hashing (LSH) [1], [2], [3] retrieves close
points with high probability and far points with low probability
thanks to locality sensitive hash functions. In vector space [2],
a locality sensitive hash function is defined by

h(p) =

⌊
a · p+ b

w

⌋
, (1)

where a is a d-dimensional random vector whose elements
follow the standard Gaussian distribution independently, b
is a real numbers chosen uniformly from the range [0, w],
and w indicates the width of bins. The regions defined by a
locality sensitive hash function is illustrated in Fig. 1(a). The
points existing in the region are regarded as approximate near
neighbors.

In high-dimensional space, however, too many points are
retrieved as the approximete near neighbors. Thus, as shown
in Fig. 1(b), LSH constructs a bucket by combining multiple
(say k) hash functions. The region of the bucket is defined by
the intersection of the regions of hash functions.

In order to increase the probability of retrieving the exact
near neighbors, LSH also uses multiple (say L) buckets as
illustrated in Fig. 1(c). The region is defined by the union of
the regions of buckets.

Finally, for subsequent discussions, we should care about
widths of bins. As in Fig. 2, the widths of bins in the feature
space change due to the effect of projection. We call the width
in the feature space apparent width, which is denoted by w′ =
w

∥a∥ .

III. FORMULATION OF PRUNING EFFECT

In this section, we derive theoretical formulae of the pruning
effect in retrieval accuracy and computational cost of distance
calculation. Both of them increase as the volume of the
buckets (e.g., Fig 1(c)) increase. However, the tendencies
of increase are not identical due to following reasons. The
retrieval accuracy is determined by whether the exact nearest
neighbor is likely to exist in the buckets. Since the exact

h

Query

1
1

H
a
sh

(a)

Query

H
a
sh

h
1
1

Ha
sh

h12

(b)

Query

(c)

Fig. 1: The regions that approximate near neighbors exist,
defined by locality sensitive hash functions. (a) The region
of one hash function. (b) The region of a bucket (yellow
region) consisting of two hash functions. (c) The region of
two buckets.

For small ||a||

For large ||a||

w w

w w’

w’w’

Apparent width
in real space

Projected onto a
Point

alarge alarge

asmall asmall

Real space

Pro
jec

tio
n

Fig. 2: The apparent widths in the feature space change
according to the norm of a vector ∥a∥. While the width in the
projected space (left column) is the same, the corresponding
width in the original feature space (right column) are different.

nearest neighbor is likely to exist in a relatively close region,
the retrieval accuracy depends on the locations of the buckets.
To the contrary, computational cost of distance calculation is
determined by the number of candidates for distance calcu-
lation. Thus the cost is independent of the locations of the
buckets, as long as the distribution of the points is assumed
to be uniform.

Although the retrieval accuracy and computational cost of

All data are
distributed uniformly

R

R

max

Query p*

Fig. 3: The model used for derivation. All data are uniformly
distributed in a very large query-centered hypersphere with ra-
dius Rmax. A point p∗ is placed on the surface of a hypersphere
with radius R.

w’

a

u

R

Query

H
a
sh

(a)

u

R

θ(u)

w’

Query

a

H
a
sh

(b)

Fig. 4: The relationships between the half-hypersphere and the
query’s bin. (a) Whole the half-hypersphere is contained in the
bin. (b) Part of the half-hypersphere is contained in the bin.
As presented in Step 1, Ph(u,w

′, R) is given by (the length
of orange curves) / (the length of orange and green curves).

distance calculation have a slight difference in their tendencies,
the theoretical formulae of them can be similarly derived. For
the sake of simplicity, we create a simple model; as shown
in Fig. 3, all data are uniformly distributed in a very large
query-centered hypersphere with radius Rmax, and a point p∗

is placed on the surface of a hypersphere with radius R. Then,
the probability that p∗ exists in the query’s bin is calculated.
Since the model is mirror symmetric, we consider only the
right half-hypersphere. In the following steps, we derive the
two formulae using the model
[Step 1] In this step, we obtain Ph(u,w

′, R), which is the
probability that p∗ falls into the query’s bin in a single
hash function. The probability is calculated as the ratio of
the following two volumes: (i) the surface area of the half-
hypersphere (the length of orange and green curves in Fig. 4),
and (ii) the overlapping surface area between the hypersphere
and the query’s bin (the length of orange curves in Fig. 4).
The surface area (i) is easily obtained as

sd(R) =
2πd/2

Γ(d/2)
Rd−1 (2)

is the surface area of a d-dimensional hypersphere with radius
R. The surface area (ii) is a bit complicated because, as shown
in Fig. 4, the surface area changes due to the relationship

among R, w′, and the relative position u of the query in the
bin. We present a way of calculation of the surface area (ii),
which is given by

sd0(R) =

∫ π
2

θ(u)

sd−1(R sinϕ)R dϕ, (3)

where

θ(u) =

{
0, for (A)
cos−1 u

R , for (B) .
(4)

Finally, we obtain the ratio of two surface areas as

Ph(u,w
′, R) =

sd0(R)

sd(R)/2
. (5)

In the following steps, we take care of changes of the param-
eters u, w′ and R to the probability of Eq. (5), respectively.
[Step 2]
In this step, we take care of the change of the relative position
u of the query. Let Ph(w

′, R) be the expectation of Eq. (5)
for u. Since b of Eq. (1) follows the continuous uniform
distribution U(0, w) and the positions of bins are decided
according to b, the distribution of u is also U(0, w). Therefore,
Ph(w

′, R) is given by

Pu(w
′, R) =

1

w′

∫ w′

0

Ph(u,w
′, R) du. (6)

[Step 3]
In this step, we take care of change of the apparent width

w′ =
w

∥a∥
. (7)

Let A = ∥a∥. Since each element of the vector a follows
Gaussian distribution, A follows χ2-distribution. Thus the
expectation of

Pu(w
′, R) = Ph(

w

A
,R) (8)

for A is obtained as

Ph(w,R) =

∫ ∞

0

pχ2(A)Ph

(w
A
,R

)
dA, (9)

where pχ2(A) is the probability density function of χ2-
distribution.
[Step 4]
In this step, we take care of change of the radius R. As in
previous steps, the expectation of Eq. (9) for R is given by

Ph(w) =

∫ Rmax

0

p(R)Ph(w,R) dR, (10)

where p(R) is a probability density function of R. As
mentioned above, since p(R) for the retrieval accuracy and
computational cost are different, we use different functions as
p(R). Therefore, Eq. (10) is denoted by Pa

h(w) and Pb
h(w) for

the retrieval accuracy and computational cost, respectively.
For the computational cost,

p(R) =
sd(R)

Vd(Rmax)
(11)

is used, where

Vd(Rmax) =
πd/2Rd

max

Γ[(d/2) + 1]
(12)

is the volume of the d-dimensional hypersphere with radius
Rmax. For the retrieval accuracy, the probability density of
the exact nearest neighbor, which is directly derived from
Eq. (2.1.6) in p.10 of [6], given by

p(R) = N

[
1− Vd(R)

Vd(Rmax)

]N−1
sd(R)

Vd(Rmax)
(13)

is used, where N is the number of the data exist in the very
large hypersphere with radius Rmax.
[Step 5]
The probabilities calculated in the previous steps are with
respect to a single hash function. Since LSH constructs buckets
using multiple hash functions, the probabilities with respect to
buckets are calculated in this step. Let Pa(w) be the probability
that the query and the exact nearest neighbor exist in at least
one bucket. Similarly, let Pb(w) be the probability that the
query and any point exist in at least one bucket. Finally, as
written in [1], Pa(w) and Pb(w) are obtained by

Pa(w) = 1− [1− {Pa
h(w)}k]L (14)

Pb(w) = 1− [1− {Pb
h(w)}k]L, (15)

respectively.
[Step 6]
This step is only for computational cost. As the indicator of
it, the number of candidates for distance calculation is used.
It is given by NPb(w).

IV. EVALUATIONS

In this section, we present two results; one is comparison
between simulation results and the theoretical values in order
to evaluate correctness of the theoretical values derived in
Sect. III, and the other is the pruning effect defined by retrieval
accuracy per the numbers of candidates. As the theoretical
values, Pa(w) and NPb(w) were calculated by Monte Carlo
method because the equations contain integrations which can-
not be obtained analytically.

Firstly, we performed comparison between theoretical val-
ues and simulation results. In the simulations, we prepared
the same situation as the derivation of the formulae. That
is, artificial data distributed uniformly in the very large hy-
persphere with radius Rmax were used. As simulation results,
averaged values of 8,000 trials (combinations of 160 data and
50 sets of hash functions) were used. As the parameters, the
dimensionality d = 100, the number of data N = 100, 000, the
radius of the very large hypersphere Rmax = 5, 000, and the
width of bins w = 5, 000 were used. The graphs in Figs. 5(a)
and 5(b) show that
(a) the relationship between the number of buckets L and the
retrieval accuracy,
and
(b) the relationship between L and the number of candidates,
respectively.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

R
e

tr
ie

v
a

l A
cc

u
ra

cy
[%

]

Number of Buckets L

Theory
Simulation

P (w)a

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 5 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r

o
f

C
a

n
d

id
a

te
s

Number of Buckets L

Theory
Simulation

(b)

Fig. 5: (a) retrieval accuracy and (b) the number of candidates in change of the number of buckets L in the range [1, 50].
d = 100, k = 3, w = 5000 were used.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 5 10 15 20 25 30 35 40 45 50

Number of Buckets L

k=3, w=2500
k=3, w=5000
k=3, w=7500

P
ru

n
in

g
 E

!
e

ct

Fig. 6: The relationship between L and the pruning effect
Pa(w)/Pb(w).

In both figures, the theoretical values were consistent with the
simulation results. We obtained similar results to the graphs,
on the examinations using various combinations of parameters
k, L and w.

Secondly, we evaluated the pruning effect. Since the theo-
retical values were consistent with the simulation results, we
used Pa(w)/Pb(w) as the indicator of the pruning effect. Fig. 6
shows the relationship between L and the pruning effect. In
the figure, all results were not below 1. Since the expected
value of the pruning effect for random selection of data is 1,
LSH achieved better results. In addition to that, the pruning
effect equaled 1 when Pb(w) = 1, because all of the data
were selected as the candidates of the nearest neighbor point.
While small L and w tend to increase the pruning effect, they
tend to decrease the retrieval accuracy. Thus, achieving high

retrieval accuracy and high pruning effect simultaneously is
difficult. In addition, an attempt to increase the pruning effect
by using too small w may be failed because too small w likely
to construct too narrow bins containing no data.

V. CONCLUSION

In this paper, in order to evaluate the effectiveness of
pruning nearest neighbor candidates by LSH, we analytically
derived theoretical formulae of retrieval accuracy and compu-
tational cost of distance calculation. According to the evalua-
tions, we found that our theoretical values were consistent with
the simulation results, and confirmed that pruning by LSH is
suitable to applications which allow certain amount of error
for reducing processing time, but has some limitations. Future
work includes applying our results to real data.

ACKNOWLEDGMENT

This research was supported by SCAT Research Grant and
KAKENHI 19300062.

REFERENCES

[1] P. Indyk and R. Motowani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” In Proceedings of the 30th ACM
Symposium on Theory of Computing(STOC’98), pp.604–613, May 1999.

[2] M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable,” InProceedings of the 20th Annual
Symposium on Computational Geometry(SCG2004), pp.253–262, June
2004.

[3] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions,” In Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pp.459–468, Oct. 2006.

[4] A. Frome and J. Malik, “Object recognition using locality sensitive
hashing of shape contexts,” chapter 10, pp.221–247, MIT Press, 2006.

[5] B. Matei, Y. Shan, H.S. Sawhney, Y. Tan, R. Kumar, D. Huber, and M.
Hebert, “Rapid object indexing using locality sensitive hashing and joint
3d-signature space estimation,” IEEE Trans. PAMI, vol.28, pp.1111–1126,
2006.

[6] H.A. David and H.N. Nagaraja, Order statistics, Wiley-Imterscience, Aug.
2003.

