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“THEME ARTICLE”, “FEATURE ARTICLE”, or “COLUMN” goes here: The theme topic or 
column/department name goes after the colon. 

Automatic Generation of 

Typographic Font from 

Small Font Subset 

The automated generation of fonts containing a large number of characters is in high 

demand. For example, a typical Japanese font requires over 1,000 characters. 

Unfortunately, professional typographers create the majority of fonts, resulting in 

significant financial and time investments for font generation. The main contribution of 

this paper is the development of a method that automatically generates a target 

typographic font containing thousands of characters, from a small subset of character 

images in the target font. We generate characters other than the subset so that a 

complete font is obtained. We propose a novel font generation method with the 

capability to deal with various fonts, including a font composed of distinctive strokes, 

which are difficult for existing methods to handle. We demonstrated the proposed 

method by generating 2,965 characters in 47 fonts. Moreover, objective and subjective 

evaluations verified that the generated characters are similar to the original characters. 

Typographic font creation is professional and time-

consuming work. All characters in a font need to be con-

sistent in terms of style and size; this is a task that is gener-

ally performed by humans. Automatic generation of fonts 

with large character sets is important for lowering design 

costs. 

The problem of cost is particularly important in languages 

containing a very large number of characters, such as Chi-

nese and Japanese. For example, most commercial fonts 

contain at least 2,965 kanji characters (kanji are Chinese 

characters adapted for the Japanese language), which are 

defined as those in daily use by the Japanese Industrial 

Standards Committee (www.jisc.go.jp). Chinese makes use 

of more than 6,000 characters. These numbers are far 
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greater than those of other major languages (for example, there are 26 characters in English, 27 

in Spanish, 49 in Hindi, 28 in Arabic, and 33 in Russian). Thus, several years are required for 

even a professional designer to create a font. 

The authors believe that there are two primary obstacles in typographic font generation. Firstly, a 

wide variation in typographic font styles exists1-2. Typographic fonts are composed of distinctive 

and decorative strokes. These strokes are difficult to extract using existing methods3-4, owing to 

their wide shape variations and intersections among strokes. Secondly, a large amount of charac-

ters is required for generation4-5. We consider that small input is key to facilitating font genera-

tion, because the user can quickly make attempts by preparing only several characters. 

In order to handle a wide variation of typographic fonts, we propose a novel stroke extraction 

method using character skeletons. Our key concept is the use of the skeletons, by means of 

which we can reveal the intersection locations and approximate stroke shapes. Consequently, 

natural strokes can be extracted.  

We capitalize on strokes in a small subset of the target typographic font. Although the strokes in 

the subset are imperfect for generating the target font, they are sufficient for generating other 

strokes by applying transformation. The proposed method generates typographic fonts using 

transformed strokes.  

We designed the proposed method to receive samples in an image format. From the perspective 

of practical scenarios, an ideal generation method must satisfy two requirements: receiving im-

age format samples and a small number of samples. Firstly, we consider the image format. It is 

more convenient to collect image format samples than vector format ones. For example, when 

users encounter texts in an unknown style, it is difficult to find samples in a vector format, while 

the image format is available immediately by capturing photographs of the text. Likewise, using 

a small number of samples is related to practical use. Collecting numerous samples is a time-

consuming task, which may be an obstacle for popularization. 

The main contribution of this paper is the development of a method that automatically generates 

the target typographic font containing thousands of characters from several characters. As illus-

trated in Figure 1, we generate the complete target font using only its small subset.  

 

Figure 1. Overview of proposed method. The input is a small subset of the target font images and 
their skeletons, and the output is the complete target font. We decompose the font subset into 
strokes using their skeletons. Thereafter, we deploy the strokes to the character skeletons for the 
target font. We form the skeletons of the target font by transforming skeletons of standard font. 
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The aforementioned contribution is supported by the experimental results. We used only 15 

characters to generate 2,965 characters for a target font. We demonstrated that, with 47 variation 

in fonts, approximately 140,000 characters could be generated in total. The number of generated 

characters is sufficiently large, and various fonts are used, including those that are difficult to 

generate in existing methods owing to being decorated fonts. Moreover, the objective and sub-

jective evaluations verify that the generated characters are similar to the original characters. 

RELATED WORK 

As illustrated in Figure 2, we broadly divided previous studies on font generation into three ap-

proaches: font generation by changing parameters, font blending, and font generation from a 

font subset. We describe these approaches below. 

 

(a) Font generation by changing parameters 

 

(b) Font blending 

 

(c) Font generation from subset 

Figure 2. Three approaches in font generation, where the left and right are the input and output, 
respectively: (a) fonts generated by varying parameters obtained from analysis on given font; (b) 
new font generated by blending different fonts; and (c) complete font generated from its subset. 

Font generation by changing parameters 

This approach analyzes a font to obtain parameters so that we can modify the font by varying the 

parameters, as illustrated in Figure 2 (a). Hu and Hersch analyzed the characters in the Times 

font family to extract parameters6. Character properties such as the thickness and aspect ratio are 

changed using these parameters. Attempts have been made at analyzing handwritten characters. 

Djioua and Plamondon used a Sigma-lognormal model supported by the kinematic theory7. An 

interactive system was developed to allow the user to fit a Sigma-lognormal model to alphabeti-

cal characters with ease. Wada et al. extracted the trajectories of alphabetical characters and 

replaced these using a genetic algorithm8.  

The methods addressing this problem generate clean characters. However, they are only applica-

ble to particular fonts that have been analyzed by humans. Furthermore, these methods cannot be 

applied to Japanese fonts, because over 1,000 characters would need to be parameterized.  
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Font blending 

This approach generates a new font by blending several different fonts; see Figure 2 (b). Su et al. 

generated Chinese calligraphy characters using a weighted blend of strokes in different styles9; 

they decomposed sample characters into radicals and single strokes, based on rules defined by 

experts in the field. Suveeranont and Igarashi addressed the generation of alphabetical characters 

for typographic fonts2. They generated characters by blending predefined characters from mis-

cellaneous complete fonts. Campbell and Kautz learned a manifold of standard fonts of alphabet-

ical characters1. The locations on the manifold represent a new font. These methods blend fonts 

and automatically generate fonts. However, obtaining a desired font requires tweaking parame-

ters, and therefore human supervision is required. 

In recent years, image generation and style transfer using deep learning have started trending. 

Lyu et al. transferred calligraphy styles into a standard font using neural networks that were 

trained with 6,000 character images for a style10. The zi2zi project (www.github.com/kaonashi-

tyc/zi2zi) generated fonts by means of generative adversarial networks trained with approximate-

ly 3,000 characters for every 27 fonts. However, methods based on deep learning require a large 

dataset for training, which needs to be compiled by a human. In this paper, we focus on font 

generation from a small subset of the target font to reduce human supervision. 

Font generation from subset 

This approach generates the complete target font from its subset, as illustrated in Figure 2 (c). 

The proposed method addresses this approach. Lin et al. generated characters with strokes ex-

tracted from given characters using an annotated font, in which the positions and sizes of the 

strokes were labeled5. Stroke extraction was performed on electronic devices so that the charac-

ters could be decomposed with ease. Zong and Zhu developed a character-generation method 

using machine learning; they decomposed the given characters into strokes by analyzing the 

stroke orientations3. The decomposed strokes were assigned to a reference font by means of a 

similarity function trained by a semi-supervised algorithm. Wang et al. focused on the spatial 

relationships of strokes for decomposition and generation4. Phan et al. extracted stroke outlines 

by a simple algorithm using skeletons11. Lian et al. extracted strokes by comparing target charac-

ters with reference characters12; the individual strokes in the references were known.  

Stroke extraction is a crucial technique for the methods used in this approach. However, most of 

these methods use naive extraction, which relies on spatial relationships4 or special devices5. It is 

difficult to extract strokes when their shapes are decorative, or when they are connected or dis-

tinctive shapes, such as the Gcomic font (see Figure 8 (a)). However, we extract strokes using 

character skeletons that clearly specify the stroke locations and relations. Therefore, we can de-

tect strokes from various other strokes, and appropriate extraction strategies can be selected. 

To the best of the authors’ knowledge, the method developed by Saito et al.13 is the only one 

applicable to characters in fonts with various shapes. They applied a patch transform14 to sam-

ples and generated alphabetical characters in a diverse range of fonts. The reader can find details 

in section 7.3.3 of the book15. However, the generated results did not meet the criteria for practi-

cal use. In this paper, we propose an adaptive active contour model (AACM) for stroke extrac-

tion. Using the proposed method, we can obtain natural character strokes, even in decorated 

characters. 

Other approaches 

Yang et al. addressed the problem of generating characters by transferring the effects of the tar-

get font into binary images of characters16. They assigned patches of the effect extracted from a 

character of the target font to the binary images. They required as many binary images as the 

characters for generation. 
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SKELETONS OF STANDARD FONT 

Firstly, we address the skeletons of the standard font, as illustrated in Figure 1. We created the 

skeletons of the standard font based on the GlyphWiki data (www.en.glyphwiki.org). 

GlyphWiki is an extremely large database, which contains strokes from more than 280,000 char-

acters in the Mincho style. It includes Chinese, Korean, Japanese, and characters created by users 

that are not used publicly. Figure 3 (a) illustrates strokes from GlyphWiki. Each stroke in 

GlyphWiki has control points, a line type, a start shape, and an end shape. The control points 

guide the trajectory of a stroke. The line type indicates whether the trajectory is a line,  curve, or 

combination of lines and curves. The start and end shapes provide the respective details of the 

stroke; see blue circles in Figure 3 (a). 

   

(a) GlyphWiki strokes (b) Skeletons of strokes 

Figure 3. Visualization of strokes using (a) GlyphWiki and (b) skeletons of standard font. The red 
triangles represent control points; the green and blue circles represent the start and end shapes, 
respectively; the black dots in (b) represent points. 

The skeletons of the standard font are composed of the points, line type, start shape, and end 

shape extracted from GlyphWiki. We extract 100 points from the trajectories by regular sam-

pling. The number of points is determined by heuristic analysis. Specifically, we define a skele-

ton S as 

 line start end, , ,S P    , (1) 

... ...

... ...

... 1 ...

i

i

x

P y

 
 


 
  

,  (2) 

where P, θline, θstart, and θend represent the extracted points, line type, start shape, and end shape, 

respectively; xi and yi represent the x- and y-coordinates of the i th extracted point, respectively. 

We adopted homogeneous coordinates. The line type θline indicates whether the line is straight, 

curved, or a combination of straight and curved. 

STROKE EXTRACTION 

In this section, we address the stroke extraction illustrated in Figure 1. When the proposed meth-

od receives a small subset of the target font, strokes are extracted. Firstly, we reveal relationships 

between strokes that are separate or crossing other strokes. Strokes are extracted by the AACM 

with adaptive constraints according to these relationships. Finally, we restore the extracted 

strokes so that natural strokes can be obtained. We carefully designed the stroke extraction so 

that highly characteristic strokes can be extracted accurately from various fonts, even those that 

are connected to one another. 
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Adjusting skeletons to font subset 

Stroke extraction is thoroughly developed with the skeletons of the font subset; however, the 

skeletons of target fonts are generally not available and therefore, we have to create these. In-

spired by accurate segmentation applications such as GrabCut17, we adopt a graphical user inter-

face (GUI) to adjust the skeletons of the standard font to the font subset in order to obtain 

accurate skeletons of the font subset. 

We developed a GUI for adjusting the skeletons of the standard font, as illustrated in Figure 4. 

The skeletons of the standard font are displayed on the character of the font subset with control 

points extracted from GlyphWiki data; see Figure 4 (a). The operator adjusts a skeleton by drag-

ging the control points, and the GUI displays these changes. The adjustment result is illustrated 

in Figure 4 (b). 

  

(a) Before adjustment   (b) After adjustment 

Figure 4. Skeleton adjustment GUI. Green lines represent skeletons; circles are control points. The 
skeletons are placed on the font character. (a) Screenshot of GUI initiating an adjustment. Note 
that the skeleton of the standard font is not matched to the character of the target font at this point, 
because the skeletons of the standard font differ from those of this font. (b) Adjustment result. 

In order to assist the operator, we implemented three automation techniques: scale adjustment, 

rotation adjustment, and cooperative movement. Firstly, the scale of the skeletons is adjusted to 

fit the character. We calculate a scaling factor from the rectangles surrounding the skeletons and 

the character. The second technique is rotation adjustment. We calculate the rotation matrix by 

matching points of the skeletons of the standard font to points extracted from the medial axis of 

the character. Thirdly, control points move cooperatively when the start point is moved; for ex-

ample, if the start point moves up, the other control points also move up. The scale and rotation 

adjustments are performed only once, prior to manual adjustment. 

We emphasize that this adjustment is not difficult, and it can be completed within minutes since 

the subset only contains 15 characters.  

Stroke relationship assignment 

Stroke extraction requires special care when strokes are touching or crossing other strokes. 

Therefore, in this section, we reveal relationships between strokes using skeletons. We define 

five relationships between two skeletons, as illustrated in Figure 5. 
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(a) (b) (c) (d) (e) 

Figure 5. Relationships between red and black skeletons: (a) continuous, (b) connecting, (c) 
connected, (d) crossing, and (e) isolated. In these examples, the body part of a skeleton is 
composed of second and third points, while start and end parts are other points. 

 Continuous: the start or end of a skeleton connects to the start or end of another skeleton. 

 Connecting: the start or end of a skeleton connects to the body of another skeleton. 

 Connected: the body of a skeleton is connected to the start or end of another skeleton. 

 Crossing: the skeleton crosses over another skeleton. 

 Isolated: the skeleton is isolated from another skeleton. 

The `body' is the part of a skeleton other than the start and end parts. We use the function 

( , )R S S  for assigning a relationship to a skeleton S against another skeleton S', based on the 

distance ( , )d S S  between the two skeletons. 

th body body

th body body

th body body

th body body

continuous if ( , ) I ( ) I ( ),

connecting if ( , ) I ( ) I ( ),

( , ) connected if ( , ) I ( ) I ( ),

crossing if ( , ) I ( ) I ( ),

isolated otherwise,

d S S d i j

d S S d i j

R S S d S S d i j

d S S d i j

   

   

    

   








 (3) 

2,
( , ) min i j

i j
d S S p p   , (4) 

where we calculate a threshold dth as 2(τ+τ'), and τ and τ’ represent the thickness of S and S’, 

respectively. Moreover, i  and j  are i and j minimizing ( , )d S S . The function bodyI  indi-

cates whether a point pi is on the body. Let a skeleton have n points; bodyI  calculates true or 

false as follows: bodyI ( ) True if 0.05 0.95
i

i
n

   , otherwise false. The parameters 

0.05 and 0.95 were determined experimentally. 

Stroke extraction using AACM 

At this stage, we have obtained the font subset, skeletons, and their relationships; see Figure 1. 

We propose an adaptive active contour model (AACM) that can extract strokes even they are 

crossing by determining the boundary of each stroke using the skeletons and relationships. In-

spired by SNAKES18, the AACM seeks the boundary by optimizing an energy function, namely 

eq. (5). Moreover, we incorporate constraints and adaptive energy modification into eq. (5) so 

that strokes can be extracted from complex characters. Examples of stroke extraction using the 

AACM are presented in Figure 6. 

The AACM seeks the boundary by minimizing eq. (5). The boundary is a closed curve, and we 

represent the position of the boundary by b(v) = (x(v), y(v)). The energy EAACM is defined as 

         
1

AACM int stroke
0

E v E v E v dv b b b , (5) 
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where Eint and Estroke represent the smoothness of the curves and boundary of a stroke, respec-

tively, while Eint follows the work18. 

       2 2

int

1
' ''

2
E v v v  b b b , 

where b’ and b’’ represent the first and second derivatives, respectively, and α and β are coeffi-

cients. We set α=0.2 and β=0.8. We define Estroke as 

        stroke v char skE v G I v I v  b b b , (6)  

where Gv is a Gaussian kernel with variance v,  is convolution operation, while Ichar and Isk are 

the gray-scale images of the character and skeletons. The pixel values are 255 if they are charac-

ters or skeletons, and 0 otherwise. The pixel value represents the energy: 0 is the lowest and 255 

is the highest. Therefore, Estroke has high energy near the skeletons.  

For the purposes of this study, it is unnecessary for a boundary to be very close to its stroke, and 

instead, it may be rather relaxed. If the boundary is too close, it may cross the stroke, and conse-

quently, the extracted strokes will be damaged. 

 

(a) Extraction of isolated stroke 

 

(b) Extraction of connecting stroke 

Figure 6. Examples of stroke extraction. The boundaries of AACM on energy Estroke and extracted 
stroke are shown on the left and right, respectively. The initial AACM (blue) and minimized AACM 
(orange) are illustrated. The black and white colors represent the energy, where black is the lowest 
and white is the highest. 
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We classify all pixels of Isk to the nearest skeleton. We use the boundaries of the segmentation 

results as the initial boundary of the AACM. Moreover, we adaptively modify Estroke and set 

several points through which the boundary must pass. 

When the target stroke is continuous, connecting, connected, or crossing, we adaptively modify 

Estroke, and set points through which the AACM must pass so that the AACM can encompass 

only the target stroke. 

In cases where the target stroke relationship is connecting or continuous, we modify Estroke and 

constrain the AACM to go through the start or end point of the skeleton, which is near to another 

skeleton. As illustrated in Figure 6 (b), Estroke is decreased around the intersection, and the 

AACM is constrained to pass through the point. Consequently, the boundary including only the 

target stroke is obtained. In particular, we decrease Estroke by 1/β1 within the distance β2τ from the 

point, except for Isk, where β1 and β2 are constant values that were determined empirically. 

In cases where the target stroke relationship is crossing or connected, we decrease Estroke by 1/β1 

within distances from other strokes of β2τothers. Thereafter, we minimize the AACM with the 

modified Estroke and extract the target along the minimized AACM. 

Moreover, we developed a method for stroke restoration so that the natural strokes could be ex-

tracted. Kindly refer to supplemental materials for further details. 

CHARACTER GENERATION 

In this section, we address the character generation illustrated in Figure 1. The generation is fully 

automatic, and is carried out once the stroke extraction is completed. The proposed method con-

sists of two processes. During the first process, we take the skeletons of the standard font and 

transform them into the target font by applying a transformation matrix, which is estimated from 

the skeletons of the font subset. Subsequently, we generate characters by deploying the extracted 

strokes on the transformed skeletons. 

Skeleton transformation into target font 

The results of the character generation would be odd in appearance—even with perfect strokes—

if we used the skeletons of the standard font, because they could differ from the target font. Thus, 

we transform the skeletons of the standard font so that we can obtain skeletons that mimic the 

target font. It should be noted that the transformation is not intended to change the structure of 

the characters. This transformation is performed to adjust the character skeletons to a unified size 

and geometry. 

We estimate the transformation matrix from the skeletons of the font subset. In particular, we 

seek two transformation matrices: Tsz and Taff, where Tsz adjusts the size of the skeletons and 

centroid translation, while Taff adjusts the affine transformation of the skeletons. Transformation 

is achieved by applying Tsz and Taff to the skeletons of the standard font. Specifically, we adjust 

the sizes, centroids, shear, and rotations. Note that these transformations can be represented by 

affine transformations. 

We estimate Tsz from the skeletons of both the standard font and font subset. Let the font subset 

be a set of characters C = {···, ci, ···}, where Hi and Wi denote the height and width of the skele-

tons of the standard font for ci, respectively. Likewise, ˆ
iH  and ˆ

iW  represent the height and 

width of the skeletons of the font subset for ci, respectively. With an output image size of Wimg 

and Himg, we can calculate Tsz, as follows:  
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. (7) 

We estimate Taff using transformations from the standard font skeletons to the font subset skele-

tons. However, Taff would become a trivial matrix, such as an identity matrix, because certain 

transformations cancel one another. In particular, these canceling transformations occur in 

curved skeletons or skeletons in different radicals. To avoid such problems, we only use straight 

skeletons. Moreover, we calculate the transformations for groups consisting of skeletons whose 

relationships are continuous, connecting, connected, or crossing with another skeleton in the 

group. If a skeleton is isolated from all skeletons in the group, it belongs to another group. Con-

sequently, we can avoid cancelations in different radicals. Suppose that we have Ngroup groups 

over skeletons of the font subset, and calculate a transformation Ti for a group,  

1

1 groupN

aff i

igroup

T T
N 

  , (8) 

2

ˆarg min
line

i
TP S

T P TP


  , (9) 

where Sline represents the straight skeletons of the standard font in a group, and P̂  is a set of 

points of the skeleton of the font subset. We calculate Taff by averaging the affine transformations 

over the groups. In practice, the transformations of groups hardly cancel one another, as rotations 

are consistent within a font. 

Stroke deployment 

We select the most suitable stroke for the skeleton of target character from the extracted strokes. 

Subsequently, we transform the found extracted stroke to fit to the skeleton. We repeat this selec-

tion until extracted strokes are assigned to all skeletons of the target character. 

Suitable strokes must be selected, because they affect the appearance of the generated characters. 

The challenge in this case is to measure the suitability of a stroke for a skeleton. As the strokes 

are images, while the skeletons are points and parameters, they cannot be compared directly. 

Therefore, we focus on the skeletons of the extracted strokes, that is, the skeleton of the font 

subset, to develop suitability in terms of the following aspects: 

 The suitable stroke has a skeleton that fits the skeleton of the target font by means of a 

transformation. 

 A small transformation is preferable; a large transformation will distort the stroke. 

 The line type, start shape, and end shape of the skeleton of the suitable stroke are the 

same as those of the skeleton of the target font. This facilitates strokes being deployed 

on skeletons that have the same line type. For example, straight strokes are deployed on 

straight skeletons, and curved strokes on curved skeletons. 

In particular, we select the closest stroke according to distance function fd, which calculates the 

distance using skeletons. We compare skeleton S of the font subset with skeleton S' of the target 

font, which is transformed by applying szT
 
and affT

 
to skeletons of the standard font. Please 
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refer to eq. (1) for details regarding S. The skeleton of the standard font Ŝ  is compared with the 

skeleton of the standard font Ŝ  , and these are associated with S and S’, respectively.  

We define fd(S, S') as:  

stroke stroke neighbor
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )df S S d S S d S S d S S      ,  (10) 

 stroke start start end end1 1

1
( , ) I( , ) I( , )d S S P TP P TP

N
            , (11) 

st st ed ed st ed st ed
1 1

neighbor

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆif , , ,and  exist
ˆ ˆ( , )

50 otherwise

S S S S S S S S
d S S

      
  



,(12) 

where N is the number of points of P, and T represents the transformation from P to P'. We ob-

tain T by means of the least-squares method: T = ( PTP ) -1 PTP'. Here, I  is 1 if the two parame-

ters are the same, otherwise it is 0. Moreover, stŜ
 
represents the points of a skeleton connected 

to the start part of Ŝ . In the case where several skeletons are connected to Ŝ  at the start part, 

we select one skeleton, the center of which is closest to Ŝ . Likewise, edŜ
 
represents a skeleton 

connected to the end part of Ŝ . If stŜ , edŜ , Ŝ  , or edŜ   is lacking, dneighbor will be the constant 

value. 

When the suitable stroke is identified, we deploy it by applying the transformation from the skel-

eton of the stroke to the skeleton of the target font. 

EXPERIMENTAL RESULTS 

We demonstrate font generation using the proposed method. We used five target fonts: Ibara, 

Gcomic, Onryo, Tsunoda, and Zinpen (see supplemental materials). Figure 7 (a) illustrates the 

original characters in the font subset for the five fonts. We selected these characters using the 

sample selection method described in the supplemental materials. These characters contain all of 

the parameters for θline, θstart, and θend. We generated 2,965 characters in which a set of JIS level-

1 exists, using β1 = 2.0 and β2 = 1.5. 

For comparison, we also used the Saito method13. To the best of the authors’ knowledge, this is 

the only method applicable to characters in various typographic fonts. This Saito method applies 

patch transform14, which breaks an image into small patches and generates a modified image by 

rearranging these under a certain constraint. The target of this method is a natural image. The 

arrangement is defined as an optimization problem, considering that there is no unnaturalness or 

inconsistency in an image. Based on this concept, the Saito method generates a character image 

by breaking the provided font patterns into small patches and rearranging them. As character 

images are binary, a problem exists whereby the continuity of an image is lost near the boundary 

of the patches and it easily becomes unnatural, which is an issue that should be resolved. The 

frameworks of the proposed and Saito methods are similar. Both exploit character images, ex-

tract character components, and generate characters. However, the extracted components differ 

significantly. The components of the Saito method are small pieces of characters that lack mean-

ing, while the components of the proposed method are complete strokes. 

Character generation results 

The characters generated in the five fonts using the proposed method and Saito method are illus-

trated in Figure 7. The characters generated by the proposed method appear clean and exhibit 

strong readability. Moreover, the font characteristics, such as the slant of the characters in Ibara 
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and the size in Tsunoda, are successfully reconstructed. These results support the effectiveness of 

the skeleton transformation using affine transformations.  

Although results of only 15 characters are presented in Figure 7 owing to space limitations, as 

mentioned previously, we generated 2,965 characters composed of simple and complex charac-

ters. The stroke complexity statistics for the generated characters are: 1 (min), 29 (max), 12.5 

(avg), and 4.5 (std). 

 

(a) Input subsets 

 

(b) Original font 

 

(c) Results of Saito method 

 

(d) Result of proposed method 

Figure 7. Input subsets and results. From top to bottom: Ibara, Gcomic, Onryo, Tsunoda, and 
Zinpen. 

We conducted an experiment to investigate the effect of the number of sample characters in the 

font subset. In particular, we changed the number of sample characters in the subset and generat-

ed characters. A smaller subset contained a lower number of strokes; for example, there were 

five strokes in two characters, but 10 strokes in three characters. The number of generated char-

acters reached 2,965 at 13 characters or above. Note that the maximum was 2,965. The number 

of generated characters was dependent on the stroke parameters θline, θstart, and θend in the subset, 
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because all parameters were required to generate all characters. In fact, we generated only 1,012 

characters at 2, and 2,965 characters at 13. According to this result, the smallest subset that gen-

erated all characters was the subset of 13 characters. We consider that redundancy of the stroke 

parameters may improve the quality of the results. An example is presented in Figure 8. Compar-

ing the characters generated using subsets including 13 and 15 characters, the latter character is 

preferred. The difference is denoted by red circles. 

 

(a) 13 characters   (b) 15 characters 

Figure 8. Example of generated characters improved by redundancy of stroke parameters. 

Subjective evaluation 

In this section, we present the results of the subjective evaluation regarding the consistency in 

the fonts. The subjective evaluations were performed using 14 participants. 

The participants evaluated the consistency between the styles of the generated characters and 

original fonts. In the evaluation, we showed the original characters in Figure 7 (a) to the partici-

pants so that they could learn the fonts. Thereafter, 160 idioms consisting of four characters were 

displayed. The idioms were written in the original characters, characters generated by the pro-

posed method or characters generated by the Saito method. We placed the mean opinion scores 

(MOSs) over the idioms. The participants assigned scores ranging from 1 (bad) to 5 (excellent) 

to the idioms, according to their impressions of the font consistency. Table 1 summarizes the 

results. The proposed method received higher MOSs than the Saito method. Moreover, the 

MOSs for the proposed method were relatively close to those for the original characters. 

Table 1. MOSs for font consistency. The score ranged from 1 (bad) to 5 (excellent) 

 Ibara Gcomic Onryo Tsunoda Zinpen Ave. 

Original 4.5 4.8 4.5 4.9 4.9 4.7 

Saito 1.1 1.3 1.5 1.1 1.3 1.3 

Proposed 4.3 4.4 4.6 4.3 4.6 4.4 

Varied font generation 

To demonstrate the font generation capability of the proposed method, we performed a genera-

tion experiment with 42 fonts (see supplemental materials): four standard fonts (1 to 4), six cal-

ligraphy handwriting fonts (5 to 10), 17 pen handwriting fonts (11 to 27), and 15 artificial fonts 

(28 to 42). The fonts were varied and included Mincho, Gothic, clerical, antique, personal hand-

writing, professional, and handwriting styles. We generated 2,965 characters for each font and 

illustrate several of the results in Figure 9. The results are promising: the proposed method gen-

erated clean characters and reproduced the style of each font.  
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(a) Original    (b) Generated 

Figure 9. Examples of generated characters in 42 fonts. 

CONCLUSION 

In this paper, we have proposed a method to generate a typographic font from a small subset of 

the target font. The proposed method successfully extracts the natural strokes from character 

images, and constructs characters by deploying the appropriate strokes onto skeletons that are 

generated automatically. The proposed method can serve as a valuable aid for font designers, 

because they only have to create several characters; other characters will be generated automati-

cally.  

An experimental evaluation was conducted using five characteristic fonts that are difficult to 

generate by means of existing methods. We evaluated the generated characters using both objec-

tive and subjective tests; all of the results indicate that the characters generated by the proposed 

method exhibited appearances, usefulness, and readability comparable to the original characters. 

Furthermore, we used 42 additional fonts to demonstrate the generative capabilities of the pro-

posed method. Therefore, we generated 2,965 characters for 47 fonts, resulting in a total of 

139,355 characters. Moreover, we only used 15 characters for each font in the generation.  

In future work, we will attempt to adjust skeletons automatically using other datasets containing 

stroke information to improve the quality of the generated character images. An important issue 

is skeleton transformation for fonts that cannot be mimicked using affine transformations. We 

will study the structural changes of the characters, so that the generation can be flexible. Moreo-

ver, we will develop a more accurate evaluation method focusing on strokes. 
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