
EEG-Based Cognitive State Assessment Using Deep
Ensemble Model and Filter Bank Common Spatial

Pattern
Debashis Das Chakladar1* Shubhashis Dey2 Partha Pratim Roy1 Masakazu Iwamura3

1Indian Institute of Technology Roorkee, India. 2Institute of Engineering and Management Kolkata, India .
3Osaka Prefecture University, Japan .

ddaschakladar@gmail.com1*

Abstract—Electroencephalography (EEG) is the most used
physiological measure to evaluate the cognitive state of a user
efficiently. As EEG inherently suffers from a poor spatial reso-
lution, features extracted from each EEG channel may not be
efficiently used for the cognitive state assessment. In this paper,
the EEG-based cognitive state assessment has been performed
during the mental arithmetic experiment, which includes two
cognitive states (task and rest) of a user. To obtain the temporal
as well as the spatial resolution of the EEG signal, we combined
the Filter Bank Common Spatial Pattern (FBCSP) method and
Long Short-Term Memory (LSTM)-based deep ensemble model
for classifying the cognitive state of a user. Subject-wise data
distribution has been performed due to the execution of a large
volume of data in a low computing environment. In the FBCSP
method, the input EEG is decomposed into multiple equal-sized
frequency bands, and spatial features of each frequency bands are
extracted using the Common Spatial Pattern (CSP) algorithm.
Next, a feature selection algorithm has been applied to identify
the most informative features for classification. The proposed
deep ensemble model consists of multiple similar structured
LSTM networks that work in parallel. The output of the ensemble
model (i.e., the cognitive state of a user) is computed using the
average weighted combination of the individual model prediction.
This proposed model achieves 87% classification accuracy, and
it can also effectively estimate the cognitive state of a user in a
low computing environment.

I. INTRODUCTION

In literature, the internal cognitive state of a person is
often expressed by mental workload, task demand, or vigilance
detection. The cognitive state of a user can be recognized using
subjective measures or physiological measures. In subjective
measure, the workload level of a person can be assessed
by rating-based questionnaires. There exist several types of
physiological measures that include cardiac activity (Elec-
trocardiogram (ECG)), respiratory activity, eye activity, and
brain activity (Electroencephalogram (EEG), Functional mag-
netic resonance imaging (fMRI), Near-infrared spectroscopy
(NIRS), Functional near-infrared spectroscopy (fNIRS)).
Among them, brain activity is mostly used to measure the
cognitive state of a user. EEG-based cognitive state assessment
can be performed through long time attention-demanding
tasks, such as driving a car [1], vigilance detection [2] etc..
Moreover, EEG has also been used in several applications like
epileptic seizure detection [3], user verification [4], emotion

recognition [5]–[7], speech recognition [8], word-familiarity
detection [9], and sentiment analysis of consumer [10]. In
binary classification problems, Common spatial patterns (CSP)
produce spatial filters by maximizing the variance of one
class while minimizing the variance of another. Spatial filters
of different EEG bands along with event-related potentials
(ERPs) had been used to evaluate mental workload in n-back
tests [11] and Sternberg memory task [12].

Most of the existing studies had used CSP features of
EEG to evaluate the cognitive states of a user. However, the
selection of the frequency band for each subject is a major
drawback of the CSP algorithm. To overcome this issue,
in this paper, we use Filter Bank Common Spatial Patterns
(FBCSP) method [13] that used all the frequency bands of
EEG for each subject. A sequential model often suffers from
overfitting, local optima issues that can overwhelm by the
ensemble model. The ensemble classifier consists of multiple
classifiers that efficiently predict the unseen data by combining
the prediction of each classifier using some voting system.
Moreover, the ensemble model significantly reduces the bias
and variance of the machine learning model.

In this paper, we have implemented a framework that
consists of the FBCSP method and the LSTM-based deep
ensemble model. To the best of our knowledge, there exists no
such framework to estimate the cognitive state of a subject. In
the FBCSP method, the filter bank consists of multiple filtered
signals with a specific frequency band of EEG. Spatial features
from each bank have been extracted using the CSP algorithm.
Next, the optimum features have been selected using the
Mutual Information-based Best Individual Feature (MIBIF)
algorithm. The optimum spatial features of each subject are
fed into each LSTM network in the ensemble model. All the
LSTM networks are executed parallelly for each subject. The
framework of this proposed model is shown in Fig. 1. The
proposed model is divided into four components, namely:
filter bank, feature extraction, feature selection, and a deep
ensemble model. Each of the components has been discussed
in Section III.

The rest of this paper is organized as follows: Related
works are summarized in Section II; the detailed discussion
of the proposed work is presented in Section III; Section IV
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represents the experimental results of the proposed model;
finally, in Section V we conclude the paper.

II. RELATED WORK

In [14], authors have implemented the FBCSP-based frame-
work to identify cognitive workload from the spatial and verbal
n-back task. They observed that spatial filters of the theta
band were highly excited in the frontal lobe whereas, filters
of the alpha band show more activation in the temporal and
parietal lobe of the brain. Yang et al. [15] has proposed an en-
semble model using stacked denoising autoencoders (SDAE)
for estimating cognitive workload. They have achieved 92%
average classification accuracy. A stacked autoencoder-based
deep ensemble model has been implemented for recognizing
the emotion of a participant [16]. Their model has achieved
83.61% accuracy. In [17], authors have evaluated different
levels (low, medium, and high) of cognitive workload during
the mental arithmetic task. They have used CSP features of the
EEG signal and Linear Discriminant Classifier to distinguish
different workload levels. Multi-channel and single-channel
EEG-based workload estimation during the mental arithmetic
task had been proposed in [18]. For multi-channel and single-
channel-based EEG systems, their model has achieved 97.87%
and 84.15% classification accuracy. Unimodal, as well as
multimodal physiological measures (EEG, fMRI), have been
used to estimate the cognitive state of a participant during
mental arithmetic test [19] - [20]. A deep neural network and
evolutionary algorithm-based hybrid model has been proposed
for estimating mental workload during ”simultaneous capac-
ity (SIMKAP)”-based multitasking activity [21]. They have
achieved 86.33% classification accuracy using deep BLSTM-
LSTM network and Grey Wolf Optimizer. In [22], the author
discussed the association between the Heart Rate Variability
(HRV) measure of the ECG signal and the complexity of the
mental arithmetic (easy and calculative) task. They observed
that the value of HRV is inversely proportional to the com-
plexity of tasks. A deep ensemble model has been developed
for estimating subject-specific mental workload during the
automatic enhanced cabin air management system (ACAMS)
experiment [15]. Subject-wise local features have been ex-
tracted from EEG. Then, classification has been performed
using the stacked denoising autoencoder. They reported an
average classification accuracy of 92%. EEG-based cognitive
state (focused, unfocused, and drowsy) assessment of an
operator has been evaluated in [23]. They have achieved an
average accuracy of 91.72% with the SVM classifier. In [24],
authors have implemented an EEG-based spatial-temporal con-
volutional neural network (ESTCNN) to detect driver fatigue.
They fused temporal and spatial features of EEG, and the
combined features have been used for classification. They have
achieved 97.37% classification accuracy with their model.

III. PROPOSED METHOD

In this section, we explain the subject-wise cognitive state
estimation using the FBCSP method and the deep ensem-
ble model. Initially, the multichannel EEG signal has been

Input EEG

Fi
lt

er
 b

an
k

CSP CSP ….

Deep 
model 1

………….

Fe
at

u
re

ex
tr

ac
ti

o
n

D
ee

p
 

en
se

m
b

le
 m

o
d

el

y2 yN

Weighted average of individual 
model predictions

Classification of different cognitive states

( S1-SN)

S1 S2 SN

Θ, α, β, ϒ band 
(4-36 Hz) 

Θ, α, β, ϒ band 
(4-36 Hz) 

Θ, α, β, ϒ band 
(4-36 Hz) 

…..

LSTM (8 neurons)

Dropout (0.2)

Batch Normalization

LSTM (16 neurons)

Dropout (0.2)

Batch Normalization

Dense + sigmoid (1)

(None, 50, 30)

(None, 1)

LSTM (8 neurons)

Dropout (0.2)

Batch Normalization

Input :

(None, 50, 8)

(None, 50, 8)

Deep 
model 2

Deep 
model N

…

CSP

MIBIF MIBIF ….. MIBIF

Fe
at

u
re

se
le

ct
io

n

y1

(None, 50, 8)

(None, 50, 16)

(None, 50, 16)

(None, 50, 16)

(None, 50, 8)

(None, 50, 8)

(None, 50, 8)

yk

LSTM model configuration

Fig. 1. Framework of the proposed LSTM-based deep ensemble model for
estimating the cognitive state of a subject. The configuration of an individual
deep LSTM model is shown on the right side. The three-dimensional LSTM
input is represented as (samples, time steps, and features), where time steps
and features are 50 and 30, respectively. The sample size is determined during
the training process.

decomposed into different equal-sized frequency bands (i.e.,
filter bank). The band-specific spatial features have been
extracted using the CSP method, and relevant features have
been selected using the feature selection algorithm (MIBIF).
Finally, the classification of the cognitive state for each subject
has been performed using the LSTM-based deep ensemble
model. The component-wise proposed framework is shown in
Fig. 1.

A. Filter Bank Common Spatial Pattern (FBCSP)

Generally, the FBCSP method consists of four stages,
namely, creation of filter bank, extraction of spatial features,
feature selection, and classification. Here, we use the first three
stages of the FBCSP method as the deep ensemble model
performs the classification. In Fig. 1, component 1 to 3 of
the proposed framework falls under FBCSP section. Here,
the filter bank was created by decomposing the EEG signal
into eight equal frequency bands, namely 4-8, 8-12, .., 32-
36 Hz using bandpass filters. The filter bank consists of all
four commonly used EEG bands, namely: theta (θ: 4-7 Hz),
alpha (α: 8 -15 Hz), beta (β: 16-31 Hz), and gamma (γ:
32-36 Hz) respectively. CSP algorithm has been applied to
extract the spatial features from each of those bands. Next,
the most discriminate CSP features from each filter bank have
been identified using the MIBIF feature selection method. The
subject-specific optimum CSP features have been fed into
the LSTM model. In the mental arithmetic test, the output
classes represent the cognitive states (task and rest) of a subject
during the experiment. Spatial filters (calculated from the CSP
algorithm) maximize the ratio of data variance for two classes.
For example, spatial filtered signal (F ) of a single trial EEG
(E) is represented as (1).

F =Wcsp × E (1)
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Where E is an C × S matrix, where C and S represents
the number of channels and number of samples per channel,
respectively. In the CSP projection matrix (Wcsp), rows and
columns represent spatial filters and the common spatial
patterns, respectively. The Wcsp for each class is computed by
maximizing the ratio between the mean covariance matrices
of each class. Here, we consider a small number of spatially
filtered signals of each class and variance of those signals
represented as features for classification. Here, the feature
vector (Xk) is computed from the first n rows of F (i.e. Fk

where k ∈ [1, ..n]). The computation of Xk using log-variance
method is mentioned in (2).

Xk = log

(
var(Fk)∑n
i=1 var(Fi)

)
(2)

B. Mutual Information-based Best Individual Feature (MIBIF)

In information theory, mutual information is computed
between two variables to reduce the uncertainty of one vari-
able based on the known value of another. MIBIF algorithm
follows the filter approach of feature selection. In the MIBIF
algorithm, initially, the mutual information of each feature
with output class is being computed, the first k features
(k < d) with maximum mutual information are being selected
as optimum features. Note that k is a user-defined parameter.

C. Deep ensemble model

This subsection consists of two parts; framework of the
LSTM-based deep model and ensemble technique to combine
LSTM models.

1) Framework of the LSTM-based deep model: Each
LSTM-based deep model within the ensemble framework
consists of several stacked LSTMs, dropout, batch normal-
ization, and dense layers. The pictorial representation of a
single LSTM-based deep model is shown on the right side
of Fig. 1. In the ensemble, all the LSTM model follows the
same structure. The dense layers are useful for applying more
hidden layers in the model. The dropout layers are mainly used
to avoid overfitting, whereas the batch normalization layers
are useful for normalizing the output of each layer. The first
LSTM layer consists of 8 units, accompanied by a dropout and
batch normalization layer. The output of the first LSTM layer
passed as an input to the second LSTM layer with 16 units,
accompanied by a dropout and batch normalization layer. The
last LSTM layer consists of 8 units, further followed by a
dropout and batch normalization layer. Finally, a dense layer
with a single neuron finished the model configuration.

2) Ensemble technique to combine LSTM models: The
ensemble process is divided into five steps. The dataset of each
subject has been divided into train, validation, and test set in
the ratio of 7:2:1. The optimum CSP features (computed by the
MIBIF algorithm) are represented as the inputs to the proposed
ensemble model. Each LSTM model has been trained based on
the optimum feature set. Next, the AUC score of each model
has been calculated on the validation set. Ensemble weight(
w

(t)
n

)
at tth time step for each model has been computed

using average AUC score as shown in (3). The prediction of N

number of LSTM models at tth timestep are y(t)1 , y
(t)
2 , ...y

(t)
N

respectively. Finally, the output of the ensemble model (4)
at (t + 1)th time step is computed by the combined results
of prediction (yn) and weight (wn) of each LSTM model at
tth time step. The entire procedure of the proposed ensemble
model is shown in Fig. 2.

w(t)
n =

AUC(model(t))∑N
n=1AUC(model

(t)
n )

(3)

y(t+1)
ensem =

N∑
n=1

y(t)n .w(t)
n (4)

The weight parameter follows two properties: 0 ≤ wn ≤ 1,
and

∑N
n=1 wn = 1. AUC score of each model at tth time

step is represented by AUC(model(t)). Here, N represents
the number of parallel LSTMs.
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Fig. 2. Procedure of the proposed ensemble model.

IV. RESULTS

This section consists of four subsections, namely; (A)
dataset analysis, (B) analysis of the FBCSP method, (C)
analysis of the deep ensemble model, and (D) comparative
analysis.

A. Dataset analysis

We have used the open-access dataset [25] for our exper-
iment. The study contains three datasets: (A) motor imagery
(left vs. right hand), (B) mental arithmetic vs. baseline test,
and (C) motion artifacts of 30 subjects. In our experiment,
we have used mental arithmetic data (dataset B) captured
from 30 channel EEG. The sampling frequency of EEG data
was set at 200Hz. Here, the task state refers to the cognitive
state of a user while performing the mental arithmetic test,
whereas the rest state represents the baseline test. The artifacts
removal from raw EEG has been performed using Independent
component analysis (ICA). Here, we have performed ICA-
based electrooculogram (EOG) rejection using Automatic Ar-
tifact Removal (AAR) toolbox in EEGLAB [26]. ICA can be
successfully utilized for finding consistent spatial components
from brain signal [27]. The artifacts-free spatial components
are useful for finding the proper CSP patterns in the FBCSP
method, which leads to better classification performance in the
later stage.
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B. Analysis of the FBCSP method

In this paper, we have applied three parts of the general
FBCSP method. The first part consists of filter bank creation
based on a specific frequency range (based on bandpass filters).
The second and third part contains the spatial feature extrac-
tion from each filter bank using the CSP method and relevant
feature selection using the MIBIF algorithm, respectively. In
the case of binary classification, the CSP filters minimize the
variance of one class. Besides this, it maximizes the variance
of another class. Here, the variance computed from each
bandpass filtered signal denotes the band-power of the signal.
CSP filters are applied to bandpass filtered signals (frequency
range: 4-36 Hz) to discriminate two cognitive states (task and
rest). For a subject, discrimination of cognitive states using
band power is shown in Fig. 3. It can be noted that the band
power for the task is higher than the rest. In Fig. 3, the band
power of CSP filters has been computed for frequency range
(4-36 Hz), but due to negligible power after frequency 35Hz,
we have omitted that part from the graph.

The mental arithmetic experiment is divided into two parts
according to different time intervals: mental arithmetic (MA)/
task (0 to 10 seconds) followed by baseline task/rest (11 to
20 seconds). CSP filters are being applied over the mentioned
time intervals. The cognitive state-wise topographical map of
a subject for all the four frequency bands is shown in Fig. 4,
and Fig. 5, respectively. Here, CSP filters are being represented
by the topographical map for a specific time range. It can be
noted that the spatial filter obtained from the alpha band (8-15
Hz) clearly distinguishes two cognitive states of a subject. In
Fig. 4(c) all the CSP filter gives more weights to the frontal
electrodes during the cognitive state task, while less weights
are being assigned to frontal lobes in the rest state (Fig. 4(d)).
For the beta band (Fig. 5(a), and Fig. 5(b)), excitation of
frontal electrodes of 3rd and 5th CSP filters can distinguish
two cognitive states. CSP filters of theta and gamma band have
no major significance in distinguishing the cognitive state.

After extracting the spatial features by the CSP algorithm,
we have proceeded to find the relevant features from the
input feature set. The k best features having maximum mutual
information have been selected using the MIBIF algorithm.
Classification accuracy after varying the size of the feature
subset (k) has been shown in Table I. The input feature set

Fig. 3. Spatial pattern obtained from CSP filter of a subject. Band power
clearly distinguishes the two cognitive states (task, rest) of the subject. Here,
X-axis and Y-axis represents the frequency (Hz) and band power (dB),
respectively.

contains 30 features, from which we select the top k features
(k< 30) for classification. It can be noted that the maximum
accuracy has been obtained with a feature subset having size
15.

TABLE I
CLASSIFICATION ACCURACY BASED ON SIZE OF FEATURE SUBSET

Size of subset Classification accuracy (%)
5 70.25
10 85.56
15 87
25 83.78

C. Analysis of the ensemble model

This subsection consists of five parts: (1) analysis based
on different structures of LSTM network, (2) output and per-
formance analysis, (3) runtime performance & computational
complexity, (4) scalability test of the proposed model, and (5)
performance analysis based on other datasets.

1) Analysis based on different structures of LSTM network:
Here, we discuss the structure of each LSTM network in terms
of LSTM layers and the number of units in each LSTM layer.
Number of units at ithLSTM layer represents as hi. At layer
1, h1 started with 2 and increased up to 24. The maximum
classification accuracy has been obtained with h1 equal to 8, so
we set the starting value of h2 as 8. For two layers, h2 varies
from 8 to 20, and maximum accuracy has been obtained with
h2 equal to 16. In the second layer, model performance hardly
improves after h2 equal to 16. Finally, in the third layer, we
set h3 between 8 to 16. Similar to the second layer, the third
layer’s performance cannot be further enhanced after extending
more units. The number of units in the first, second, and third
LSTM layer (h1 = 8, h2 = 16, and h3 = 8) with maximum
accuracy have been employed in each LSTM network in the
ensemble model. The classification accuracy of the proposed
ensemble model with different structured LSTMs is plotted in
Fig. 6.

2) Output and performance analysis: This section dis-
cusses the output and performance analysis of the proposed en-
semble model. For binary classification, binary cross-entropy
loss function has been used. We train the model with the batch
size of 2000. Adam optimizer, with the initial learning rate of
1e-03, has been used. Due to low computational resources, we
performed the experiment on fourteen subjects. For evaluating
the subject-wise performance of the model, we perform the
leave-subject-out experiment, where the training/testing set
contains an entirely different subject. We trained the model
with thirteen subjects and predicted the output on the remain-
ing subject (i.e., ”Subject in Test set” in Fig. 8). The result
of the leave-subject-out experiment is shown in Fig. 8. It can
be observed that the maximum model performance has been
achieved for subject 10 (S10). The learning curve of a model
indicates the training and validation score for varying numbers
of training samples. The learning curve of an individual
LSTM-based deep model is shown in Fig. 7(a). Here, both
the validation and the training score of the model converge
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Fig. 4. CSP filters of different frequency bands of a subject during the mental arithmetic (MA) experiment. (a-b): theta band (4-7 Hz), (c-d): alpha band (8-15
Hz). Cognitive state-wise CSP filters have been obtained during the specified time interval (task: 0-10 seconds and rest: 11-20 seconds) of the experiment.
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Fig. 5. CSP filters of different frequency bands of a subject during the mental arithmetic (MA) experiment. (a-b): beta band (16-31 Hz), and (c-d): gamma
band (32-36 Hz). Cognitive state-wise CSP filters have been obtained during the specified time interval (task: 0-10 seconds and rest: 11-20 seconds) of the
experiment.
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Fig. 6. Classification accuracy of the proposed ensemble model using various configurations of the LSTM model: (a) single layered LSTM, (b) two-layered
LSTM, and (c) three-layered LSTM.

at high value with an increasing number of training samples,
which will increase the generalization of the model. As all the
LSTM model follows the same structure, and data distribution
is identical for all the subjects, we conclude that the proposed
ensemble model becomes highly generalized to predict the
output classes. The Receiver Operating Characteristic (ROC)
curve of the proposed model is plotted in Fig. 7(b). The AUC
score of the model achieves 0.91, which leads to a significant
result in classification analysis. The classification result of the
proposed model is discussed in Table II. This table shows the
class-wise (task and rest) prediction results of the proposed
model. The result is presented based on different classification
parameters, such as precision, recall, and F1 score.

TABLE II
CLASSIFICATION ANALYSIS OF THE PROPOSED MODEL

Class Precision (%) Recall (%) F1 Score (%)
Task 86.38 82.13 84.20
Rest 85.73 81.32 83.47

3) Runtime performance & Computational complexity:
Here, we first analyzed the runtime performance of the en-
semble LSTM network; then, we estimate the overall model
(consisting of the FBCSP method, MIBIF method, and ensem-
ble LSTM network) complexity. We perform the analysis for
a maximum of fourteen subjects due to the limitation of a low
memory environment. Our hardware configuration comprises
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Fig. 7. Performance analysis of the proposed model: (a) Learning curve of a single LSTM model, (b) ROC curve of the proposed ensemble model.
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Fig. 8. Subject-wise performance analysis: Result of Leave-subject-out
experiment.

a 2-GHz CPU and a 24G RAM. For comparison, we have
built a sequential model with a similar LSTM configuration
as per the ensemble model. The model performance has been
evaluated in terms of execution time. For a subject, the total
time required to train a sequential LSTM model is about 28.20
minutes; for fourteen subjects, it takes nearly 395 minutes.
On the other side, the training time required for the proposed
ensemble model (consists of fourteen parallel models) is ap-
proximately 349 minutes. In the ensemble model, the training
time required for each subject is 24.93 minutes. It can be noted
that the sequential model takes more time compared to the
proposed model for the same runtime environment. Hence, we
can conclude that the proposed ensemble model outperforms
a sequential model in a low memory environment.

The computational complexity of CSP algorithm is O(m3+
Nm2), where m and N represents number of features and
number of samples respectively [28]. So, the computational
complexity for extracting the spatial features from P fil-

ter banks is O(P (m3 + Nm2)) or simply O(m3 + Nm2)
(as P << m, and P << N ). In the MIBIF method,
first, the inter-feature mutual information is computed in
O(N

√
KN ) [29], where N is the total number of data points

and K (K < N ) is a constant. Next, the feature set has
been sorted (O(N logN)), and the top f features have been
selected based on the individual feature’s rank (O(1)). Thus,
the total time taken for sorting and selecting f features is
O(N logN). Hence, total complexity required for MIBIF
algorithm is O(N logN +N

√
KN). It can be simply written

as O(N
√
KN), (N logN < N

√
KN , when N → ∞). The

computational complexity of a single LSTM network for t
time step and W weights is O(tW ) [30]. Here, each weight
associated with a singe node. Thus, the overall complexity of
the proposed ensemble model is O(S(tW + (m3 +Nm2) +
(N
√
KN)))), where S is the number of subjects.

4) Scalability test of the proposed ensemble model: In this
subsection, we discuss the scalability test of the proposed
model by varying the number of subjects. For the low comput-
ing resources, we only perform the classification analysis up
to fourteen subjects. The scalability test of the proposed model
is shown in Fig. 9. It can be noted that maximum accuracy
has been obtained for ten subjects; the performance of the
proposed model cannot be further enhanced after extending
more number of subjects.

5) Performance analysis based on other datasets: To eval-
uate the robustness, we have applied the proposed method
on other mental arithmetic datasets. The recording protocol
of each dataset is different (EEG, NIRS). The performance
analysis of each dataset is shown in Table III. A notable perfor-
mance of the proposed method has been observed irrespective
of dataset and recording protocol.

D. Comparative analysis

This section comprises two subsections: (a) comparative
analysis with other neural network models and (b) comparative
analysis with existing studies.
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Fig. 9. Scalability test of the proposed ensemble model.

TABLE III
PERFORMANCE ANALYSIS BASED ON OTHER DATASETS. NOTE: MA:

MENTAL ARITHMETIC

Dataset - Recording protocol Study Accuracy
(%)

MA vs. Baseline task [25] - NIRS
Shin et al. [25] 80.70
Shin et al. [31] 80.00
Ergun et al. [32] 84.94
Proposed method 89.52

MA vs. Resting task [33] - NIRS
Bauernfeind et al. [33] 79.70
Proposed method 89.76

MA vs. Resting task [34] - EEG
Ahammed et al. [35] 87.50
Rani et al. [36] 77.58
Proposed method 91.11

1) Comparative analysis with other neural network models:
Here, the comparative analysis between the proposed model
with other neural network methods (GRU, BLSTM-GRU,
stacked LSTM, BLSTM-LSTM) has been discussed. The
comparative analysis is presented in Table IV. It can be noticed
that the proposed model performs better than other neural
network models with higher classification accuracy and lesser
computational resources (in terms of the number of nodes used
in the LSTM network).

TABLE IV
COMPARATIVE ANALYSIS WITH OTHER DEEP NEURAL NETWORK MODELS.

NOTE: L: LSTM, D: DENSE, B: BLSTM, G: GRU, TD: TIME
DISTRIBUTED LAYER

Model Precision
(%)

Recall
(%)

Accuracy
(%)

Layers/nodes

GRU 75.78 75.64 75.65 G30-G20-G10-D100-D1
BLSTM-
GRU

81.60 81.56 81.54 B30-G10-G10-TD1-D1

Stacked
LSTM

81.83 80.66 80.98 L30-L20-L10-TD1-D1

BLSTM-
LSTM

82.61 82.52 82.53 B30-B10-L10-D100-D1

Proposed 86.55 81.72 87.00 L8-L16-L8-D1

2) Comparative analysis with existing studies: Here, we
have performed a comparative analysis between the proposed
ensemble model and other existing studies for the same experi-
ment. We have implemented the existing studies and examined

them on our dataset. The comparative analysis is shown in
Table V. All the existing methods have been examined in the
same hardware environment (2-GHz CPU and a 24G RAM).
We keep the same configuration of parameters for classifiers
(shrinkage LDA, SVM, kNN, etc.) as per existing studies, and
compute the runtime of those methods. From the Table V, we
can conclude that the proposed model effectively distinguishes
the mental state of a subject with high classification accuracy
and reasonable runtime.

TABLE V
COMPARATIVE ANALYSIS WITH EXISTING STUDIES

Study Method Accuracy
(%)

Runtime
(min.)

Shin et al. [25] CSP + Shrinkage LDA 83.60 284.17
Sammer et al.
[20]

PCA + ANOVA 71.40 142.78

Rebsamen et al.
[19]

Sparse Multinomial Logistic
Regression

65.02 120.05

Dimitriadis et
al. [37]

Functional connectivity graph
(parieto occipital lobes) + kNN

84.12 245.91

Al-shargie et
al. [38]

Two sample t-test + SVM 85.00 356.89

Subhani et al.
[39]

SVM + t-test 83.43 368.23

Proposed
method

Ensemble deep LSTM net-
works

87.00 349.00

V. CONCLUSION

This paper combines two methods, namely, the FBCSP
method and the deep ensemble model for identifying the
cognitive state of a subject during a mental arithmetic test.
The proposed deep ensemble model can efficiently identify the
cognitive state of a subject with 87% classification accuracy.
The model can be effectively utilized for the execution of a
deep model over a large volume of data in the low memory
environment. The proposed ensemble model takes less com-
putational time compared to an equivalent sequential model
and other state-of-the-art methods. The results of Table IV
proves the superiority of the proposed ensemble model over
other deep neural network models. The robustness of the
proposed model has been evaluated in Table III. In comparative
analysis (Table V), we also noticed that the proposed ensemble
model outperforms other existing studies related to the mental
arithmetic experiment.

Due to low-computational resources, performance evalu-
ation of the proposed model has been performed for less
number of subjects. Moreover, the source dataset [25] con-
tains multimodal (EEG and NIRS) physiological signals of
thirty subjects. In contrast, we have conducted our experiment
only on EEG signals. Therefore, our experimental analysis is
limited to the EEG-based unimodal approach rather than the
multimodal (EEG and NIRS) one. For the same reason, we
could not perform the unimodal vs. multimodal comparison
of the same experiment.

The effectiveness of the proposed model can be further
improved by increasing the computational resources. In the
near future, we will revise the proposed model by adding
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multimodal functionality (EEG and NIRS) for more number
of subjects. We will further compare the performance of the
proposed model based on a unimodal vs. multimodal scenario.
The comparison will be helpful in identifying the best modality
that can effectively estimate the cognitive workload of a
person.
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[23] Ç. İ. Acı, M. Kaya, and Y. Mishchenko, “Distinguishing mental attention
states of humans via an EEG-based passive BCI using machine learning
methods,” Expert Systems with Appl., vol. 134, pp. 153–166, 2019.

[24] Z. Gao, X. Wang, Y. Yang, C. Mu, Q. Cai, W. Dang, and S. Zuo, “EEG-
based spatio–temporal convolutional neural network for driver fatigue
evaluation,” IEEE transactions on neural networks and learning systems,
vol. 30, no. 9, pp. 2755–2763, 2019.

[25] J. Shin, A. von Lühmann, B. Blankertz, D.-W. Kim, J. Jeong, H.-
J. Hwang, and K.-R. Müller, “Open access dataset for EEG + NIRS
single-trial classification,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 25, no. 10, pp. 1735–1745, 2016.
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