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Abstract

The unwarping of curved document images is a crucial
problem for camera-based document analysis since most of
current OCR techniques can not handle distortion due to
perspective and warping. In previous work we have shown
how to recover the page shape from a single image using an
iterative procedure without camera calibration, and using
the shape information to restore a frontal view of a flat doc-
ument. In this paper we report our recent progress using a
global optimization method to do shape estimation. Experi-
mental results show a clear improvement over our previous
method.

1 Introduction

Digital cameras have become more and more popular
not only among consumers but also business and techni-
cal professionals. For the OCR community, they provide
a potential alternative to scanners as document imaging de-
vices. Current OCR techniques are, however, designed with
digital scans of flat documents in mind, and cannot handle
general camera-captured documents due to both perspective
and warping.

One way of removing the added 3D distortion is to use
special 3D scanning equipments such as structured light. A
mesh can be built to represent the 3D surface and directly
flattened [1] or transformed to a developable mesh [8]. Al-
ternatively, the shape can be estimated from the image. The
problem of removing only the perspective from images of
planar documents is addressed in [3, 8, 4]. For warped doc-
uments, there are parametric approaches [2, 5, 12] that esti-
mate the 3D shape and non-parametric ones [10, 11] that by-
pass shape estimation. Among them, [11, 12] are designed
only for scans of bound books; [2, 10] require a straight
frontal view of page with cylinder shape; [5] is proposed
for general images, but needs camera calibration and a prior
knowledge of a closed contour (e.g., page boundaries) on
the page which may be difficult in practice. Overall, cur-
rent methods have various restrictions that keep them from

being applied to general images.
Our goal is to handle general warped documents with

fewer restrictions. Our method falls in the parametric cat-
egory. It is based on two key observations: 1) curved doc-
ument pages form developable surfaces which can be ap-
proximated by planar strips, and 2) the projected image of
printed textual content on the page constrains the underly-
ing surface shape by the parallelism, geodesic, and equidis-
tant properties of text lines (see [6] for a discussion on geo-
desic texture flow and developable surface under perspec-
tive projection). Compared to other’s work, our method
does not require special equipment or camera calibration,
can be applied to general warped documents, and can work
on partially occluded documents.

In [7] we have discussed the details of image processing,
shown that page shape can be estimated, and obtained much
higher OCR rates from unwarped images. However, shape
information is not explicitly expressed in [7], which makes
it difficult for evaluation, nor is the estimation process glob-
ally optimal with regard to developable property and text
property. In this paper we present our recent progress using
global shape optimization which gives significant improve-
ment over [7].

Section 2 and Section 3 briefly recalls the work in [7].
In Section 4 we describe the initialization and optimization
of shape estimation. Section 5 discusses experiment results
and finally Section 6 concludes the paper.

2 Problem Modeling

The shape of a smoothly rolled document page can be
modeled by a developable surface. In [7] we show that a
developable surface can be approximated by planar strips
that come from the family of its tangent planes (see Fig 1),
which can be fully described by a set of reference points
{Pi}, and surface normals{Ni}.

For documents that are covered by printed text we can
define two texture flows on the surface, both in 3D space
and in 2D projected images. One corresponds to the text
line direction, which we call3D(2D) major texture flowand
denote byT(or t); the other corresponds to the vertical char-
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Figure 1. A developable surface can be ap-
proximated by planar strips (for variable defi-
nitions see Section 4)
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Figure 2. Texture flow detection: (a) major
texture flow (b) minor texture flow

acter stroke direction, which we call3D(2D) minor texture
flow, denoted byB(or b). For a 3D rulingR we also define
a2D projected rulingr in the image.

3 Image Processing

Based on the developable surface model, our approach is
to segment the surface by a group of rulings, approximate
the pieces in between the rulings by planar strips, and unroll
the page strip by strip. In this section we will very briefly
go over the image processing step that support the shape
estimation in next section (for more details see [7]).

The first step is to find the printed text area because we
will be using the properties of printed text and any non-
text element may cause unexpected results. An adaptive
thresholding [9] inside the text area gives us the binary text
image, and all following computation is based on the binary
text image. Secondly we extract the two 2D texture flows.
We divide the image into small blocks, and use projection
profile analysis to compute the local texture orientations. A
relaxation process resolves any conflict among neighboring
blocks, and results in two texture flow fields (Fig. 2).

Projected ruling detection is based on the property that
texture flow patterns along a projected ruling is more con-
sistent than that along an arbitrary line. For each ruling,
its vanishing point is estimated by the fact that printed text
lines are usually equally spaced and the invariance of cross
ratio under perspective projection.

4 Page Shape Estimation

In [7] we described how to iteratively optimize the shape
of a document under developable property and text property
constraints. However, there are two problems. First, we do
not get an explicit surface normal for each strip; instead we
computehorizontalandvertical vanishing points. Second,
we do not have an explicit objective function and therefore
the iterative process does not have an explicit measurement
of the progress. In this paper, we address these two prob-
lems by formally introducing several constraints defined on
surface normals as well as focal length of the camera, and an
objective function based on the constraints. By optimizing
the objective function we obtain explicit surface normals
and focal length.

4.1 Constraints

It is difficult to estimate the normal of each planar strip
only using local features. Fortunately there are strong
global constraints imposed by the developable property and
text properties. First we will define the variables (see
Fig. 1), and then introduce the constraints.

• Wanted unknowns:
– 3D normals: {Ni}L

i=1, whereL is the number of strips
– 3D reference points:{Pi}L+1

i=1

– Focal length: f0.
• Preprocessing results and known variables:
– Projected rulings:{r i}L+1

i=1

– Projected reference points:{pi}L+1
i=1

– Projected texture flow:t andb all over the image
• Other related variables:
– 3D rulings: {Ri}L+1

i=1

– 3D texture flow: For the i-th strip, we select a group
of Ji sample points inside the strip, and defineTij as the
3D major texture flow vector at the j-th point, andBij as the
minor texture flow vector.

– 3D viewing direction vector: For the j-th sample point
in the i-th strip, we defineVij as its viewing direction vector
with respect to the camera’s optical center.

All the vectors are of unit length.
Supposeη(·) represents the normalization operator

whereη(v) = v/|v|, then the 3D vectors are related to their
projections in the image by the following equations:

Ri = η((r i × Vi) × (Ni + Ni−1)/2)
Tij = η((tij × Vij) × Ni)
Bij = η((bij × Vij) × Ni)

Note that in the equation relatingR andr we useNi +
Ni+1 to approximate the surface normal alongRi.

Without loss of generality we can assume thatPi are on
the rulings. By the continuity property of the planar strips it
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is easy to see that once we have obtained surface normals,
focal length, and the depth of any particularPi0 , the restPi

are fully determined.
There are four constraints that we can derive from the

developable property of the page and the property of text
documents:

• Orthogonality between surface normals and rulings:
Ideally, we would wantNi−1 · Ri = Ni · Ri = 0. Since we
have fixedRi to be orthogonal toNi−1+Ni, we only need to
checkRi · (Ni −Ni−1). We defineµ1 =

∑L−1
i=1 (∆Ni ·Ri)2

where∆Ni = Ni − Ni−1, and ideallyµ1 = 0.
• Parallelism of text lines inside each strip: Text line di-

rections are represented byTij . We useµ2 =
∑

i

∑
j |Tij−

Ti|, whereTi is the average of allTij within the i-th strip,
to measure their parallelism. Ideallyµ2 = 0.

• Geodesic property of text lines crossing two neighbor-
ing strips: The text lines on two neighboring strips form
two different angles with the 3D ruling that separates the
strips. After unwarping, the angles do not change. If the
sum of the two angles isπ, it means the text line is straight
in the unwarped image. We useµ3 =

∑
i((Ti+1−Ti)·Ri)2

to measure the straightness, which ideally is zero.
• Orthogonality between text line direction and vertical

stroke direction: The orthogonality can be measured by
µ4 =

∑
i

∑
j |T τ

ijBij |, which in the idea case should be
zero.

In our experiment we embedded two additional con-
straints:

• Smoothness: We useµ5 =
∑

i |∆Ni| to measure
the smoothness of the surface. A large value indicates
abrupt changes in normals of neighboring strips and there-
fore should be avoided.

• Unit length: Each normal should be of unit length.
We measure this byµ6 =

∑
i(1 − |Ni|)2.

The overall optimization objective function is the
weighted sum of all constraint measurements,

F (X) =
6∑

i=1

αiµi

whereX represents all normals and the focal length, and
αi are weights.

Overall, given{r i}, {tij} and{bij}, the objective func-
tion is fully determined by the unknown{Ni} andf0. The
optimal set of{N∗

i } andf∗0 should minimizeF .

4.2 Shape Initialization and Optimization

A good initial value ofX is essential for optimizing the
highly non-linear objective function. Such initial values can
be obtained using the estimated vanishing points of rulings.
These vanishing points, when focal length is given, deter-
mine the direction of 3D rulings. Since surface normals are
orthogonal to 3D rulings, this eliminates one degree of free-
dom from the unknown normals. The remaining degree of
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Figure 3. After the surface is developed, post-
processing ensures that strips fit each other
seamlessly and major texture flow direction
is horizontal

freedom allow a normal to rotate in the plane orthogonal the
the ruling. So the objective function is decided by a set of
rotation angles. Furthermore, the computation of the objec-
tive function involves either each individual normal (µ2, µ4,
µ6), or two neighboring normals (µ1, µ3, µ5). Therefore,
we can use dynamic programming (DP) search to find the
best set of rotation angles that gives the minimum objection
function output.

The focal length is not covered by the DP search, how-
ever. It is independent of the surface normals, and we have
to perform an exhaustive search for the initial focal length.
More specifically, we select a set of possible focal lengths
that are constrained by the physical lens specification, and
for each value we find the “best” surface normals, and com-
pute the objective function. We fit a 3rd order polynomial
curve to the objective function values vs. the focal lengths,
and use the curve to find the “best” focal length. Then
we compute the “best” normals for this focal length, and
take them as the initial values for non-linear optimization
process.

Our non-linear optimization module is based on the opti-
mization toolbox in MATLAB, which is fairly fast and pro-
duces good result as long as the initial point is reasonably
close to the true solution.

After we have estimated the surface normals and focal
length, we can arbitrarily select the depth of any one ref-
erence point, which determines the depth of the other ref-
erence points, and thus fully determine the 3D position of
planar strips. The planar strips can then be mapped to a flat
plane, placed side by side to form the flat document. Due
to the errors in shape estimation and the fact that the docu-
ment page in real world may be not perfectly developable,
some postprocessing is required to make sure that the strips
fit each other and that restored text lines are horizontal and
continuous across the whole unwarped image (see Fig. 3).

5 Experiment Results

We have applied our method to both synthetic and real
images. The synthetic images are generated by warping a
flat document image around a predefined developable sur-
face and projecting it onto the image plane of a pinhole
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camera. With synthetic data, we can evaluate the estimated
results such as texture flows, projected rulings, ruling van-
ishing points, surface normals and focal length against the
ground truth.

Fig. 4 shows four synthetic images of warped documents
and the unwarped images. It also compares the ground truth
focal lengths to the estimates, and shows the average error
of surface normals. In Fig. 5 two real images of warped
documents and their unwarped images are shown. As we
can see in both Fig. 4 and Fig. 5, the text lines are mostly
straight and horizontal. Some text line still have some curve
due to the errors in major texture flow detection, which is
more evident around corners or margins.

The errors in estimated surface normals are measured
by the angles between them and corresponding true surface
normals. We do not, however, measure the focal length es-
timation by the difference between it and the true value, be-
cause when focal length is large, the reconstructed shape is
less sensitive to the change in focal length, which means we
can tolerate a larger error. To factor that into the evaluation,
we useview angledefined as following: a view angle for a
given focal lengthf0 is 2atan(d/f0) whered is the largest
distance from any point in the image to the optical axis (or,
roughly half of the image’s dimension). The change in view
angle w.r.tf0 vanishes asf0 increases, and thus is a better
performance measurement.

Although we do not have explicit surface normal esti-
mation from the method in [7], in order to compare it with
the results obtained by global optimization we construct ap-
proximated surface normals from the results of previous
method. In Table 1 we list the mean and standard devia-
tion of view angle errors and surface normal errors from
the estimation by previous method, by initialization and fi-
nal optimization of current method. The results of previ-
ous method is obtained from 32 images in which documents
contain only text, and the results of global optimization is
obtained from 44 images in which documents contain fig-
ures and tables. Because of the non-text elements, these 44
images are inherently more difficult to process. Neverthe-
less, our current method has a great lead over the previous
one. This is due in part to the refinements we made in other
parts of our code but the main reason is still the new opti-
mization method, especially the shape initialization by DP.
In [7] without an explicit objective function representing all
constraints we initialized the shape based on local informa-
tion, and it is not surprising that the initial shape is not as
good as that obtained by DP that takes into account global
information. The benefit of an explicit objective function is
also manifested by the improvement from the initial shape
to the final result.

Currently, the parameters involved in image processing
and shape estimation stages are manually set. The weight
factorsαi are set by experiment in such a way thatµi be-

f0 = 1000, f∗0 = 1187; f0 = 1000, f∗0 = 1121;
eN = 2.8◦ eN = 2.8◦

f0 = 1000, f∗0 = 993; f0 = 1500, f∗0 = 1533;
eN = 2.5◦ eN = 1.6◦

Figure 4. Unwarped synthetic document im-
ages: f0 is true focal length and f∗o is esti-
mation (both in pixel unit); eN is the average
normal error measured in degree

come comparable to each other. In the future we will ad-
dress the automatic parameter selection problem. Never-
theless, among several different settings for each procedure
we have not found significant changes in the results. In our
experiments we used very conservative parameter values in
order to ensure accuracy for arbitrary images. In practice
with some knowledge of the image, it is possible to tighten
some parameters for better speed.

Among the images that have unsatisfactory results, the
major problem comes from the text area detection step. If a
background object or a picture in the document gets identi-
fied as text, it can interrupt the texture flow detection, and

28



Previous method [7] (32 tests) With global optimization (44 tests)
Initial estimation Final optimization

Ave. view angle error 12.7 8.3 7.3
Std. view angle error 20.5 8.0 7.6

Ave. surface normal error 14.0 6.5 4.8
Std. surface normal error 13.9 4.4 3.6

Table 1. Shape estimation evaluation (error measured in degrees)

Figure 5. Unwarped real document images

O
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A

Figure 6. View angle definition: OO′ is optical
axis; f0 is focal length; A is the farthest point
in the image from OO′.

break the following procedures. Since many researchers
have proposed various techniques for identifying text in im-
ages, we believe that we can solve this problem by choosing
one of them.

6 Conclusion

In this paper we describe how we optimize the page
shape estimation globally for unwarping images of curved
documents captured by cameras. The document surface is

modeled by a developable surface, and we show that the
textual content (text lines in particular) provides enough in-
formation for recovering the page shape. Compared to the
results of our previous method, improvement is obtained by
introducing a global optimization into the shape estimation
process. From the OCR point of view, the geometry of the
reconstructed page is definitely within the acceptable toler-
ance. However, other challenges still exist, including vary-
ing shade, non-uniform blur, fusion of multiple views. We
will address them in our future work.

References

[1] M. S. Brown and W. B. Seales. Image restoration of arbi-
trarily warped documents.IEEE Trans. PAMI, 26(10):1295–
1306, October 2004.

[2] H. Cao, X. Ding, and C. Liu. Rectifying the bound document
image captured by the camera: A model based approach. In
Proc. ICDAR, pages 71–75, 2003.

[3] P. Clark and M. Mirmehdi. On the recovery of oriented doc-
uments from single images. InProc. Adv. Concepts for In-
telligent Vision Sys., pages 190–197, 2002.

[4] C. R. Dance. Perspective estimation for document images.
In Proceedings of SPIE Document Recognition and Retrieval
IX, volume 4670, pages 244–254, 2002.

[5] N. Gumerov, A. Zandifar, R. Duraiswarni, and L. S. Davis.
Structure of applicable surfaces from single views. InProc.
ECCV, pages 482–496, 2004.

[6] D. C. Knill. Contour into texture: Information content of
surface contours and texture flow.J. Opt. Soc. Am. Ass.,
18(1):12–35, Jan 2001.

[7] J. Liang, D. DeMenthon, and D. Doermann. Flattening
curved documents in images. InProc. CVPR, pages 338–
345, 2005.

[8] M. Pilu. Undoing paper curl distortion using applicable sur-
faces. InProc. CVPR, volume 1, pages 67–72, 2001.

[9] Ø. D. Trier and T. Taxt. Evaluation of binarization methods
for document images.IEEE Trans. PAMI, 12(3):312–315,
1995.

[10] Y.-C. Tsoi and M. S. Brown. Geometric and shading correc-
tion for images of printed materials a unified approach using
boundary. InProc. CVPR, pages 240–246, 2004.

[11] Z. Zhang and C. L. Tan. Correcting document image warping
based on regression of curved text lines. InProc. ICDAR,
volume 1, pages 589–593, 2003.

[12] Z. Zhang, C. L. Tan, and L. Fan. Restoration of curved doc-
ument images through 3D shape modeling. InProc. CVPR,
pages 10–15, 2004.

29




