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Abstract 
 

Text on planar surfaces in 3-D scenes in video 
imagery can undergo complex apparent motion and 
distortion as the surfaces move relative to the camera. 
Tracking such text and its motion through a contiguous 
sequence of video frames in which it is visible is 
desirable primarily for two reasons. First, reliable 
tracking of text enables the images of text persisting 
across multiple frames to be grouped, processed, and 
understood as a single unit. Second, text tracking aids 
the mapping of corresponding text and background 
pixels across multiple frames to enhance image quality 
and resolution before character recognition. Existing 
text tracking approaches, however, are limited to 
approximate pixel-based correspondences of adjacent 
frames without any explicit, rigorous modeling of 3-D 
scene geometry. To this end, we describe an approach 
that tracks planar regions of scene text that can 
undergo arbitrary 3-D rigid motion and scale changes. 
Our approach computes homographies on blocks of 
contiguous frames simultaneously using a combination 
of factorization and robust statistical methods. In spite 
of low resolution and noisy imagery, this approach 
produces a more accurate and stable motion estimate 
than existing methods using only two adjacent frames. 
In addition, our method is robust enough to tolerate 
imperfections in the spatial localization of text. Our 
results demonstrate that the mean offset pixel error of 
our tracker is as small as 1.1 pixels. 
 
1. Introduction 
 

Recognition of text that appears in real-world 
scenes, such as protest signs and name tags, is of utility 
for automated characterization and annotation of video 
imagery because of its valuable contribution to the 
video content. Such a capability enables information 
retrieval systems to index videos in a convenient and 
meaningful way for later reference. Text in video can 
take the form of artificially generated text that is 
overlaid on the imagery (such as superimposed captions 
in broadcast news programs and other commercially 
produced videos), or text that is part of the video scene 
itself (such as a sign outside a place of business or 
placards in front of conference participants). In this 
work we focus on scene text. 

The recognition of scene text in video imagery  

involves several major processing steps, including 
text detection, text tracking, and OCR. This paper 
focuses on tracking of scene text. Since the same text 
can be visible on multiple consecutive frames in video, 
tracking of text is desirable so that all the images of text 
in the multiple frames can be grouped, processed, and 
understood as a single unit. In real-time applications 
with live video, such as portable road sign translators 
for tourists and soldiers, recognized text can be treated 
as an event that immediately triggers additional 
automated processes, such as machine translation and 
speech synthesis. An automated surveillance system 
may trigger database lookup of a recognized vehicle 
license plate number. Therefore, reliable means of text 
tracking is important to ensure a single response for 
each distinct text event. 

There are two aspects to text tracking: (1) frame-to-
frame association of text regions, and (2) frame-to-
frame motion estimation of each region. The former 
involves determining the temporal continuity of regions 
and assigning an ID to each tracked text region. The 
latter involves computing a pixel-to-pixel mapping to 
establish localized frame-to-frame geometrical 
correspondence. Frame-to-frame association enables a 
single OCR result to be produced and reported for 
multiple contiguous appearances of the same text 
object. Furthermore, frame-to-frame geometrical 
corresponddence is required for the video OCR process 
to take advantage of temporal redundancy of text that 
appears in multiple frames to create an enhanced image 
before subsequent OCR processing. Such multiframe 
integration includes multiple image averaging [1,2] and 
superresolution [3,4]. 

Scene text has a number of characteristics that make 
it difficult to detect and track. Scene text exists in 3-D 
space and can be slanted, tilted, or modulated by the 
surface of the object on which the text is printed. 
Although scene text often lies in a plane, several types 
of distortion can be introduced when the plane 
containing the text is at an angle relative to the image 
plane. In the most general case, the distortion is 
described as a projective transformation between the 
plane containing the text and the image plane [5]. The 
tracking of scene text is complicated by the fact that its 
appearance can change drastically during its presence in 
the video. In addition to camera pan, tilt, rotation, and 
zoom affecting the text, the size and viewing angle of 
text on moving objects can vary significantly.  
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Figure 1. Subarea in consecutive frames of video shot from a moving vehicle. 

 
In addition, video sequences that are generated with a 
nonstationary camera (e.g., a handheld camcorder or 
vehicle-mounted video camera) may contain a 
significant amount of random, jerky camera motion, 
which can blur the image of the text, cause interlace 
shearing, and/or make the text hard to track from frame 
to frame. This is especially true of imagery collected at 
high-magnification lens settings. For example, Figure 1 
illustrates some of these artifacts on a subarea extracted 
from seven consecutive frames of a video captured 
from a moving vehicle. Furthermore, a camera’s 
automatic focus mechanism may take time to adjust 
while the camera zooms and pans or the contents of the 
scene change or move, resulting in some intermittently 
out-of-focus frames. Scene text may be partially 
obscured temporarily by objects moving in the 
foreground (e.g., a person walking in front of a sign).  
 
2. Prior work 
 

Due to the difficulties in tracking scene text that 
were outlined in Section 1, many previous text tracking 
approaches were designed for overlay text [6,2,7], 
assumed the text was horizontally oriented, and used a 
translational motion model. Crandall et al. [8] used 
motion vectors in MPEG compressed video and a least-
square-error search of a small neighborhood for 
tracking of text regions; for text captions that rotated or 
changed scale, features extracted from the connected 
components within the text region were matched in 
consecutive frames. Li and Doermann [1] and Li et al. 
[9] aligned blocks of scene text in adjacent frames 
using a translational motion model and correlation 
within a search window, and when the detected motion 
did not fit the translational model, the contour of the 
text region was determined by tracking a blob created 
by horizontal smearing of edges found in the text 
region. Tracking failures were detected [1] by using 
criteria such as straightness of the motion trail of the 
text region center.  

In all the previous work cited above, motion was 
computed from adjacent frames only; therefore, these 
tracking methods may fail if the video is intermittently 
degraded, or if portions of the text regions are 
temporarily occluded. In addition, previous methods 
that relied on trajectory-based motion prediction would 
have difficulty tracking text in video with random, 
jerky camera motion. Furthermore, previous methods 
assumed that the text region boundaries are accurately 
defined. However, text detectors may not always find 
text region boundaries reliably. For example, non-text 

image patterns that have characteristics similar to text 
and are adjacent to text in the scene might incorrectly 
be included as part of the text region in some frames. 
Finally, previous methods estimated motion only in the 
2-D image plane and did not attempt to explicitly model 
the 3-D motion of text in the scene. 

In addition to the above text-specific tracking 
approaches, previous work on tracking regions in 
general include systems based on the brightness 
constraint equation [10–12], and motion estimation 
from two-frame point correspondences [13]. In the 
former method, the pixel intensity difference between 
two frames is expressed as a function of the motion 
between the frames and is minimized using nonlinear 
optimization techniques. This method, for the case of 
planar motion, has been extended to multiple frames in 
[14] using factorization. The expression assumes that 
all changes in intensity at each pixel are due to motion, 
instead of brightness change, occlusion, and other 
effects. This makes the method problematic in 
situations where there is clutter and occluding surfaces 
in the region that are not moving the same way. In 
addition, for the motion to be solvable by successive 
linearization, it has to either be small, or the region has 
to be large enough relative to the motion to be suitable 
for multiscale methods. This is not always the case for 
text regions of short height and viewed through a 
handheld camera. The other approach [13], tracking 
individual points followed by robust estimation of the 
whole region motion, is more suitable when there is 
clutter, occlusion, and large motion. In the method of 
Hartley and Zisserman [13], not all of the points have to 
be successfully tracked or consistent with the motion, 
as long as there is a large enough inlier set that is. 
However, the method proposed by Hartley and 
Zisserman [13] estimates tracking descriptors only on 
two frames at a time. Since text is often visible on 30 or 
more video frames (at 30 fps), estimation based on just 
two frames is limiting and is clearly not optimal. 
 
3. Proposed approach 
 

One of the primary contributions of the current work 
is its generalization of the work described in Hartley 
and Zisserman [13] to simultaneous multiple frame 
analysis. In our work we track points of interest across 
all the frames being considered, and then, within each 
detected text region, estimate the planar transformation 
simultaneously and robustly over blocks of multiple 
frames. We assume that the region to be tracked is 
planar in the scene and that there are a sufficient 
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number of points in the region with enough texture to 
be tracked over the frames that are compared. For six 
parameter affine motion, we require a minimum of 
three points tracked over all frames in a block. These 
assumptions are typically valid for text regions, since 
text regions are typically highly textured and bimodal in 
intensity. Using the process described below, the region 
of interest is tracked a block of images at a time. The 
motion in the previous block is used to locate the region 
in the first frame of the next block, and so on, until the 
end of the video or a point is reached where the 
minimum set of inliers goes below a threshold (four 
tracked points), indicating that the region cannot be 
tracked further. Ideally, the block size should be 
selected automatically to maintain a sufficient point 
correspondence count. In the experiments discussed 
here, the block sizes were manually fixed to five or ten 
frames, depending on the magnitude of image change 
and the size of the region. 

 
3.1. Point location and tracking 
 

Tracking a point has three steps: (1) initially 
selecting the point in the image, (2) localizing it in 
subsequent frames, and (3) determining when it is no 
longer trackable (termination). In our system, different 
points are selected and terminated in different frames, 
so that any given pair of relatively close frames will 
have points in common. Points are selected using two 
criteria: texture and coverage. The presence of texture 
aids reliable localization of the point across frames, 
which is true if the local intensity variation in the image 
in different directions is high. The peaks of the 
Laplacian-of-Gaussian image and/or the peaks of the 
Shi and Tomasi texture operator [11] can be used as 
indicators of high texture regions. We have found that 
these two methods have similar and reasonable results. 
When there are points detected and tracked over all 
parts of the region, the region is said to have high 
coverage. To improve coverage, we iteratively select 
detected points, greatest texture first, until the 
maximum distance from each pixel to the nearest 
detected point is below a preselected minimum 
threshold. Selected points are tracked and localized in 
subsequent frames using normalized correlation of a 
small image patch centered at the current position of the 
point. The new position of the point is located to sub-
pixel precision by quadratic interpolation of the 
correlation surface. The tracking of a point is 
terminated when the correlation drops below a 
threshold, which is typically 0.65 out of a range of 
[−1, 1], where 1 is perfect. The image patch size is a 
function of the magnitude of the image transformation, 
the size of the scene surfaces, the magnitude of visual 
texture, and the video quality. Small patches tend to be 
tolerant of large image transformations and complex 
scene geometry, but less tolerant of poor image texture 
and poor video quality. Image patches of 15×15 pixels 

(relatively small) were used for the experiments 
discussed here since text tends to support good texture 
and the video quality was minimally adequate for this 
size.  

 
3.2. Point selection and motion estimation 

 
A large number of the points in the automatically 

extracted region of interest may be unusable for the 
estimation of the region motion for various reasons: 
They may be on a different surface, their trajectories 
may be misestimated due to noise and low resolution, 
or the points may be optical artifacts such as 
specularities and moving shadows. To make text 
tracking reliable, the unusable points must be detected 
as outliers. This outlier detection is challenged by the 
fact that there are many degrees of freedom (six or 
eight) in the projected motion of the scene surface. 

Once points are tracked, we estimate the trans-
formation of the whole region in blocks of multiple 
frames. Our method combines two approaches: (1) 
robust parameter estimation, such as RANSAC [15], 
which simultaneously estimates the parameters and 
determines the inlier data set; and (2) simultaneous, 
multiframe reconstruction of the projecting points and 
the projecting transformations for all the frames, which 
further reduces the transformation error and reduces 
outliers. 
 
3.2.1. Application of RANSAC. Applying RANSAC, 
our algorithm randomly selects minimal subsets (of 3 
points each) of point tracks in the frame block, 
estimates the projective transformation for each frame 
given the set (using the factorization approach 
discussed below), and then counts the number of point 
tracks that are consistent with the transformations 
(inliers). The largest inlier set is then used for the 
multiframe reconstruction, again using the factorization 
approach. Point track consistency is measured as the 
root-mean-squared projection error across all the frames 
after reconstructing the scene plane position of this 
point and reprojecting it in all frames. A projection 
error of two pixels was used as a consistency cutoff. 
 
3.2.2. Multiframe reconstruction and motion 
estimation. The multiframe reconstruction of the scene 
plane and the projective transformations is done using a 
2-D version of the 3-D factorization technique 
developed in [16]. Since the scene structure we are 
recovering is planar, we can force the factorized 
matrices to be of rank 2, which further constrains the 
reconstruction (beyond the 3-D case) and leads to a 
more accurate solution for our purposes. As in the 
original 3-D version, we construct a 2m × n data matrix 
W, where each column is a point track [x1, y1, x2, y2, ..., 
xm, ym]T, (xi, yi) is the point position in the ith frame 
minus the point centroid of that frame, and there are m 
frames and n points. Assuming an affine camera model, 

32



W = M × S, where M is a 2m × 2 motion matrix, with 
each pair of rows i representing the nontranslational 
components of the affine projection for frame i, and 
where S is a 2 × n matrix with each column j 
representing point j's two component position on the 
scene plane. Using SVD, W can be factorized into U × 
D × VT, where U × √D and √D × VT are M and S up to a 
2-D affine transformation. Since we are only interested 
in the 2-D motion between frames, this ambiguity can 
be ignored. The motion between the first frame 0 in the 
block and any other frame t is H(0,t) = Qt × Q0−1, 
where Qt and Q0 are the affine transformations between 
the scene plane and frames t and 0 respectively. Qt is 
constructed by using the point centroid of the frame as 
the translation component and rows 2t and 2t – 1 of M 
for the other four parameters. Q0 is constructed 
analogously. 
 
4. Preliminary Results 
 

Figures 2 through 4 show some examples of the 
tracking performance. For each of these video 
sequences, the tracker  was initialized by manually 
specifying a bounding box to simulate the results of a 
text detection process. Figure 2 shows the results of 
 

tracking the text region shown in Figure 1. Figures 3 
and 4 show three frames extracted from two other 
sequences. The imagery in Figures 2 and 3 was taken 
with a handheld video camera from a moving vehicle. 
The middle frame in Figure 3 shows one of three 
consecutive frames in which the text region (the 
“Hallmark Cards” sign) was occluded by a pole in the 
foreground. The text region in Figure 4 was 
successfully tracked throughout the zoom out by a 
factor of 6, even to the point of the text being 
unreadable. To assess performance quantitatively, we 
calculated the mean offset pixel error by comparing the 
relative positions of 4 points in the first and last frames 
of 9 tracked text regions, each in a different video 
sequence. The mean offset pixel error of the tracker was 
1.1 pixels. 

Figure 5 shows some of the details of the point 
detection and selection. Figures 5a and 5b show all of 
the points that were detected on a portion of the back of 
a moving postal truck in video frames taken about 4 
seconds apart; Figures 5c and 5d show the inlier points 
used for tracking the text region in frames 5a and 5b, 
respectively. Notice that only a subset of the detected 
points is used for tracking, and the set of points 
detected and tracked at the two video frame times is not 
identical. 
 

 

    
Figure 2. Example with jerky camera motion. 
 

   
Figure 3. Example with jerky camera motion and occlusion. 
 

   
Figure 4. Example with large change of scale. 
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a.  Detected points b.  Detected points 
 

 
c.  Inlier tracked points d.  Inlier tracked points 
 
Figure 5. Details of point detection and selection on moving postal truck. 
 
5. Discussion 
 

Our method ascertains that, in a block of frames of 
nontrivial size, the trajectory of every point is 
consistent with the region motion over several frames. 
The likelihood of the trajectory of an outlier point being 
spuriously consistent over many frames is much lower 
than the chance of it being consistent over a single 
frame pair. Therefore, the multiframe nature of the 
proposed reconstruction approach assists the detection 
of outliers during the motion estimation process 
compared with the methods considering only two 
frames at a time [e.g., 13]. The multiframe 
reconstruction approach being used here, factorization 
in combination with robust statistical search methods, 
also reduces the effects of noise or low magnitude 
tracking errors in the inlier point set. Using 
factorization, a least squares reconstruction of the 
original scene points is generated from all the 
projections in the frame block, simultaneously with the 
projecting homographies from this point reconstruction 
to the individual frames. Thus, the estimated trans-
formations are with respect to a reconstructed point set, 
not between two noisy point sets as in the two-frame 
approach. 

As in 3-D factorization, our approach can be 
extended to handle the projective case using an iterative 
approximation [13]. However, the full eight parameter 
projective model should be used with caution on small 
text regions in noisy video, and it is typically 
unnecessary for tracking the text. 

Unlike tracking methods such as Kalman filtering 
that rely on a particular motion model, this method does 
not require any knowledge about how the motion in 
different frames is related, and therefore can track text 
in video with random, jerky camera motion. 

Future designs will include enhancements of both 
the point tracking and the geometric analysis. 
Currently, the point tracker can fail when there are 
temporary interruptions in the point visibility or quality 
of the video since the tracking stops once the 
correlation drops below a threshold. Instead, the tracker 
should continue to search for the point in subsequent 
frames and report only the parts of the track with high 
enough correlation. The geometric analysis can be 
improved by not forcing the factorization step to use 
exactly every frame in the block. The quality could 
improve by selecting only frames of high enough 
quality, essentially an outlier detection process for 
frames analoguous to the outlier detection already 
performed over the points. 
 
6. Summary 
 

Text on planar surfaces in 3-D scenes in video 
imagery can undergo complex apparent motion and 
distortion as the surfaces move relative to the camera. 
Tracking such text and its motion through a contiguous 
sequence of video frames in which it is visible is 
desirable primarily for two reasons. First, reliable 
tracking of text enables the images of text persisting 
across multiple frames to be grouped, processed, and 
understood as a single unit. Second, text tracking aids 
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the mapping of corresponding text and background 
pixels across multiple frames to enhance image quality 
and resolution before character recognition. Existing 
text tracking approaches, however, are limited to 
approximate pixel-based correspondences of adjacent 
frames without any explicit, rigorous modeling of 3-D 
scene geometry. To this end, we describe an approach 
that tracks planar regions of scene text that can undergo 
arbitrary 3-D rigid motion and scale changes. Our 
approach computes homographies on blocks of 
contiguous frames simultaneously using a combination 
of factorization and robust statistical methods. In spite 
of low resolution and noisy imagery, this approach 
produces a more accurate and stable motion estimate 
than existing methods using only two adjacent frames. 
In addition, our method is robust enough to tolerate 
imperfections in the spatial localization of text. Our 
results demonstrate that the mean offset pixel error of 
our tracker is as small as 1.1 pixels. 
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