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Abstract 
 

We present a robust connected-component (CC) 
based method for automatic detection and 
segmentation of text in real-scene images. This 
technique can be applied in robot vision, sign 
recognition, meeting processing and video indexing. 
First, a non-linear Niblack method (NLNiblack) is 
proposed to decompose the image into candidate 
CCs. Then, we feed all these CCs into a cascade of 
classifiers trained by Adaboost algorithm. Each 
classifier in the cascade responds to one feature of 
the CC. We propose 12 novel features which are 
insensitive to noise, scale, text orientation and text 
language. The classifier cascade allows non-text 
CCs of the image to be quickly discarded while 
spending more computation on promising text-like 
CCs. The CCs passing through the cascade are 
considered as text components and are used to form 
the segmentation result. We have built a prototype 
system and the experimental results prove the 
effectiveness and efficiency of the proposed method. 
 
1. Introduction 
 

Text detection and segmentation from a natural 
scene is very useful in many applications. With the 
increasing availability of high performance, low 
priced, portable digital imaging devices, the 
application of the scene text recognition is rapidly 
expanding [1].  By using cameras attached to cellular 
phones, PDAs, or standalone digital cameras, we can 
easily capture the text occurrences around us, such 
as, street signs, advertisements, traffic warnings or 
restaurant menus. Automatically recognition, 
translation or enunciation of these texts will be of 
great help for foreign travelers, visually impaired 
people and computer programs which perform the 
video indexing or meeting processing, etc. [1] 

Fully automatic text extraction from images, 
especially from scene images, has always been a 
challenging problem. The difficulties underlie in 
variations of scene text in terms of character font, 
size, orientation, texture, language and color, as well 
as complex background, uneven illumination, 
shadows and noise of images (Fig. 1 shows one 

example). In addition, a high speed of processing is 
usually desired. 

There are growing works focusing on the real 
scene text detection these years. Current text 
detection approaches can be classified into two 
categories.  

The first category is the texture based methods. 
Shin et al. [5] use a star-like pixel mask to expose 
the intrinsic features of text occurrences. In [6], P. 
Clark et al. carefully propose 5 localized measures 
and use a combination of these measures to get 
candidate text regions. The frequency domain 
techniques are also used to detect text-like texture, 
such as: Fourier Transform on short scanning line [8], 
discrete cosine transform [13], Gabor Transform [4], 
Wavelet decomposition [2], Multi-resolution edge 
detector [10]. We find these methods perform quite 
well on relatively small characters such as text lines 
on a menu or a document, because smaller texts 
often possess stronger texture responses. However, 
for big characters such as road signs or shop names 
(like Fig. 1), the strong texture response of complex 
background will mislead these algorithms and leave 
the big characters undiscovered.  

 
Fig. 1. A difficult natural scene image 

The second category is the connected component 
(CC) based methods. Color quantization [14], 
Morphological operation [7] and Symmetric 
Neighborhood Filters [9] are often used to form the 
candidate CCs. We find these methods can 
effectively deal with the big characters as well as the 
small ones, but to choose the exact text CC from the 
candidate ones often relies on heuristic rules, such as: 
aspect ratio [7][12][14], aligning-and-merging 
analysis [14], layout analysis [10], Hierarchical 
Connected Components Analysis[9]. These rules are 
often instable and can not guarantee robust detection 
result. 
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In this paper, we propose a more stable and more 
robust CC-based algorithm. This algorithm can 
enable us to integrate the heuristic rules and features 
in a more regularized and effective way. Therefore, 
our algorithm can effectively tackle various 
difficulties in the natural scene: such as complex 
background, complex text layout, different text 
language, uneven illumination, wild variation of text 
size and orientation.  

The framework of our proposed algorithm is 
showed in Fig. 2.  The method is composed of three 
stages. In the first stage, we employ a novel Non-
linear Niblack (NLNiblack) method, which can 
efficiently and effectively decompose the gray image 
into candidate CCs. In the second stage, every 
candidate CC is fed into a series of classifiers and 
each classifier will test one feature of this CC. If one 
CC is rejected by any of the classifiers in the cascade, 
then it is considered as a non-text CC and need no 
further judgment. In the last stage, the CCs passing 
through the whole classifier cascade will be 
processed by a post processing procedure and form 
the final segmentation result.  

 
Fig. 2. The text detection algorithm 

This framework substantially differs from the 
existing text detection algorithms in two key points. 

 The first point is that we utilize a classifier 
cascade, which can easily discard the majority of the 
non-text CCs and quickly focus on more promising 
text CCs. This idea is inspired by face detection 
technique [15] and is capable of processing images 
rapidly while achieving high detection rates. 
However, due to the essential difference between 
text detection and face detection, we originally 
propose a specific learning scheme for text detection 
problem. 

The second point is that we propose a series of 
novel features, each of which has specific 
contribution to the text detection task. As we will 
show later, some of the features can take the 
advantage of texture characteristic of the image, 
some of them can exploit the spatial coherent 
information and some of them can efficiently speed 
up the whole algorithm, etc, By using these features, 
our algorithm can possess the advantages of both 
texture based methods and CC based methods, while 

suppressing their drawbacks. Our work is an 
innovative attempt to formulate a series of features 
for text detection. 

We developed a prototype system using a mobile 
phone, Sony Ericsson S700c, attached with a 120 
Mega pixel sensor and exhibited this system in 
Shanghai International Industry Fair 2004. It can 
automatically detect, segment and translate the 
English and Japanese signs into Chinese and prove 
the effectiveness and the efficiency of our algorithm. 

The paper is organized as follows. In section 2, 
we present the non-linear Niblack decomposition 
method. Section 3 gives twelve features for 
effectively discriminating the text CCs from non-text 
ones. Then we describe how to train the classifier 
cascade using these features in section 4 and we also 
describe the post process in this section. Issues in 
system development and the experimental result are 
discussed in section 0. Section 6 gives the 
conclusion. 
 
2. Non-linear Niblack decomposition 
 

As we know, decomposing the image into a set of 
CCs is a very crucial step in CC-based methods. If 
the decomposition step gets poor results, the 
performance of the whole algorithm will drop 
dramatically. There are several existing methods 
[7][14][9] aiming at effective and robust 
decomposition. Beside this concern, the efficiency of 
computation and the low complexity of 
implementation also concern us. Therefore, we 
propose a very efficient non-linear Niblack 
(NLNiblack) thresholding method inspired by [16]: 
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where  
k is set to be 0.18 as standard Niblack method. 
f(x,y) is the input pixel intensity at position (x,y). 
Mean(. , W) is the mean value filter with W width. 
Deviation(. , W) is the standard deviation filter with W width. 
Order [. , p,W] is the ordered statistics filter with p percentile 

and W width. 
The difference between the NLNiblack and the 

original Niblack is that we just add two ordered 
statistics filter Order[. , p,W] to the background filter 

( )1 , ,p Bx y Wμ  and foreground filter ( )2 , ,p Fx y Wσ . 

In the background filter ( )1 , ,p Bx y Wμ , the filter 
width, WB, is equal to 1/16 of image width and p1 is 
set to be 50%. It is because the large median filter 
can extract the background objects while not 
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excluding their high frequency components. This 
background filter can handle the uneven lighting in 
natural scenes. 

In the foreground filter ( )2 , ,p Fx y Wσ , the filter 
width WF, is 1/5 of WB and p2 is set to be 80%. This 
high percentile filter can effectively ‘spread’ the 
influence of small areas with high variance to 
neighboring regions and can effectively increase 
local noise suppression.  

Then we label the CCs in two thresholded layers, 
1 and -1, respectively. The proposed NLNiblack 
decomposition can effectively handle the difficult 
conditions, such as low contrast, uneven illumination 
and degraded text. Fig. 3 shows the result. 

(a) Original picture (b) NLNiblack result  

(c) Original picture (d) NLNiblack result 

(e) Original picture (f) NLNiblack result 

Fig. 3. NLNiblack result: black 1, white -1 
 
3. Features to detect characters 
 

After decomposing the image into a set of CCs, 
we convert the segmentation problem into a 
classification problem – all we need to do is to 
classify all candidate CCs into 2 categories, text or 
non-text. Then we propose 12 novel features to 
expose the intrinsic characteristics of text CCs. 
 
3.1. Geometric Features 
 

The first three features are geometric feature. 
They are just some common features but can 
effectively discard a large proportion of apparently 
non-text CCs with very small computational expense. 
So they can dramatically decrease the execution time 
of the whole algorithm. 

Area Ratio is used to discard too big or too small 
CCs: 

(CC)_
(Picture)

AreaFeature AreaRatio
Area

=  (2) 

Length Ratio is used to discard too long or too 
short CCs: 

{ }
{ }
max ,

_
max PicW,PicH

w h
Feature LengthRatio =  (3) 

Aspect Ratio is used to discard too thin CC: 
{ }_ max / , /Feature AspectRatio w h h w=  (4) 

According to these three features, we can build 
three classifiers, each of which will test one feature. 
The effect of these geometric features can be viewed 
in Fig. 4.—after the filtering process of the 
geometric classifiers, apparently non-text CCs are 
filtered out. The way of training the classifiers will 
be discussed in section 4. 

(a) Input: NLNiblack Result  (b) after geometric classifiers  
Fig. 4. Effect of geometric classifiers 

 
3.2. Edge Contrast Feature 
 

The Edge Contrast Feature plays the most 
important role in the whole algorithm. Proposing this 
feature is based on a very common observation – 
regardless the complex background and the uneven 
lighting, text CCs are often ‘highly closed’ by edge 
response. Therefore, we use Eq.(5) to measure the 
edge closure degree of a CC. This feature fully takes 
the advantages of the texture based detection 
methods and moreover it also has a very strong 
response to large characters. 

 ( ) ( )
( )

( ) ( ) ( )

_
Border CC Edge Picture

Feature EdgeContrast
Border CC

Edge Picture Canny Picture Sobel Picture

∩
=

= ∪

 (5) 

where Canny(Picture) and Sobel(Picture) mean the 
normalized Canny and the Sobel response of the 
image, respectively. And Border(CC) means the 
border pixels of the CC. This feature provides an 
image independent measurement of every CC’s edge 
contrast. This kind of independency is a key 
requirement in the training process.  

(a) Input: geometric result (b) after edge contrast classifier
Fig. 5. Effect of edge contrast classifiers 
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In Fig. 5.(a) the red mask is the Edge(Picture) 
response and we can find CCs with small edge 
closure degree are discarded. 
 
3.3. Shape Regularity Feature 
 

Text CCs often possess more regular shape than 
arbitrary noise CCs in the natural scene. Based on 
this observation, we propose 4 features: Holes, 
Contour Roughness, Compactness and Occupy Ratio 
(Eq.(6)). We can find text CCs often have smaller 
value in Holes and Contour Roughness, but larger 
value in Compactness and Occupy Ratio, while non-
text CCs behave just the opposite. These features are 
used to suppress the noise which have irregular 
shape but have strong texture response. 
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where 
imfill(.) fills the holes in the CC. 
imholes(.) count the holes in the CC. 
BoundingBox(.) is the bounding box of the CC. 
In Fig. 6, we can see the irregular noises with 

high texture and contrast responses are effectively 
reduced. For instance, it is very difficult to discard 
the small ‘CAR’ symbol on the board without using 
the shape regularity features. 

(a) Input: edge contrast result (b) after shape reg classifier 
Fig. 6. Effect of shape regularity classifiers 

 
3.4. Stroke Statistics Feature 
 

Character is composed of strokes, so we proposed 
2 computational demanding features which expose 
the stroke statistics about CC. These two features 
check other aspects of ‘irregularity’ in the term of 
character stroke. 

The first feature is Mean Stroke Width based on 
the observation that character stroke width is often 
relatively small: 

( )( )( )_ _Feature Stroke Mean Mean strokeWidth skeleton CC= (7) 

The second feature is Normalized stroke deviation 
based on the observation that strokes of character 
often have similar width and the CC with big stroke 
variance is more likely to be noise: 

( )( )( )
( )( )( )

_ _
Deviation strokeWidth skeleton CC

Feature Stroke std
Mean strokeWidth skeleton CC

=
 (8) 

In Eq. (7) and (8), skeleton(.) stands for the 
morphological skeleton operation and strokeWidth(.) 
stands for the shortest distance between the pixel on 
the CC skeleton to the outside pixels.  

(a) Input: NLNiblack Result (b) after stroke classifiers 
Fig. 7. Effect of stroke statistic classifiers 
In Fig. 7, we can find that the big characters 

survive after these classifiers while noises are 
effectively reduced. 
 
3.5. Spatial Coherence Features 
 

The last two spatial coherence features exploit the 
spatial coherence information to filter out the non-
text CCs. Noises will have less spatial regularity and 
coherence, so we propose these two features: 

Spatial coherence area ratio 
( )( ),5 5

_ _
(Picture)

Area imdilate CC
Feature AreaRatio S

Area
×

=  (9) 

Spatial coherence boundary touching 
( )( )_ _ ,5 5Feature Boundary S Bound imdilate CC= ×  (10) 

In Eq.(9) and (10), imdilate(., strel) stands for the 
morphological dilation operation with structural 
element, strel. In this stage, the apparently non-text 
CCs have already been discarded. Then in every 
layer, if some CC expands significantly after being 
dilated with a small structural element, it is more 
likely to be spatially correlated random noise. On the 
contrary, the text CCs will not act like this because 
of the structural nature of characters. By using the 
spatial coherence features, we can efficiently reduce 
the noises (In Fig. 8).  

 

(a) Input: stroke result (b) after spatial classifiers 
Fig. 8. Effect of spatial coherence classifiers 
 
4. Classifier cascade training 
 

Since we have already had a set of CCs and for 
every CC we have 12 features which can effectively 
separate text CC from non-text CC, the remaining 
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problem is how to use these features. The easiest 
solution is heuristically setting all thresholds 
manually. This is a very unstable approach. 
Therefore, a better solution may be the machine 
learning method.  

Then the further problem is which machine 
learning method to use. Since some of the features 
we use are computational demanding, such as, stroke 
statistics features and edge contrast feature, it is 
unwise to calculate all of the 12 features together 
during classification. We need a mechanism to 
discard most of the non-text CCs by less 
computation. This requirement reminds us of the 
Adaboost scheme and the attentional cascade 
architecture used in face detection [15].  

Although we use Adaboost to train all the 
classifiers and also build an attentional cascade, our 
method substantially differs from the techniques 
used in [15] because text detection and face 
detection are two  essentially different tasks. Table 1 
gives a comparison between these two tasks. 

 
Table 1. Text detection vs. face detection 

 Text detection Face detection 

Basic unit Connected 
component 

24x24 detect 
window 

Feature num 12 / CC 45,396 / Window 

Feature Quality High Vary violently 

Negative 
sample 

Easy to find Need careful 
consideration 

Performance 
Information 

Not known in 
advance 

Known after feature 
selection 

 
4.1. Notation 
 

Before going into training scheme details, we will 
clarify the notation we use at first. See Table 2. 

 
Table 2. Notations 

f  

False positive rate: 

( )
( )

area error
area negative  

d  

Detection rate: 

( )
( )

area hit
area positive  

FR  
False rejection rate: 

( ) ( )
( )

1
area negative area error

f
area negative

−
− =

 

P  
positive training set 

iN  
ith negative training set 

if  
maximum false positive rate of ith layer 

id  
minimum detection rate of ith layer 

F  
overall false positive rate 

D  
overall detection rate 

M  
number of classifier in the cascade 

ih  
ith weak classifier in the cascade 

iw  weight of ith classifier in Adaboost learning scheme 

4.2. Important Assumption 
 

We will feed all the CCs into the classifier 
cascade. If one CC is rejected by any of classifier, it 
is regarded as non-text CC. Therefore, it is easy to 
know that we have the following relationship: 

( ) ( ) ( ) ( )
1 1

  
log log log log

M M

i i
i i

M M

i i
i i

F f D d

F f D d
= =

= =

= =

∏ ∏
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 (11) 

In the logarithm conversion form of the basic 
relationship, we can find that the overall detection 
rate is linearly dispatched to all the classifiers. Then 
we can assume the logarithm form of minimum 
detection rate is linearly dispatched according to the 
‘quality’ of each classifier. Therefore, we will have 
the dispatching formulation as follows: 

( )i dispatchd D
γ

=   (12) 

where Ddispatch is the detection rate can be 
dispatched and γ stands for the ‘quality’ portion of 
the ith classifier. We find that this formula has close 
relationship to the idea of indifference curve 
proposed by J. Sun. et.al [17]. 
 
4.3. Cascade Building Process 
 

First, we will use the standard Adaboost training 
scheme [15] to train a strong classifier, a linear 
combination of 12 weak classifiers. Every weak 
classifier only responds to one single feature of CC 
and makes the decision whether the CC is text or not. 

 
Fig. 9. Cascade training algorithm 

Second, based on the combination weight we get 
from Adaboost, we use the following algorithm to 
train the attentional cascade (Fig. 9). Our method 
differs from the existing methods in adaptively 

• User selects overall minimum detection rate Dtarget. 
• Random Select 200 pictures from total 368 pics 

o P = set of positive examples 
o N = set of negative examples 

• F0 = 1.0; D0 = 1.0; i = 0 
• Feature = { featurej | j = 1 to M } 
for i = 1: M 

Di = Di-1 
foreach featurej  in Feature 
 get distribution of featurej  based on {P,N} 
 calculate dj (Di), fj (Di) FRj (Di,1- Di) 
end 
choose the feature k with Biggest fk (Di) 
γ = FRk (Di,1- Di)/SUM j (FRj (Di,1- Di)); 
di = (Dtarge/ Di)^γ ; 

training:  di  = hi (di, P, N) 
N = ∅ 
evaluate the current cascaded detector hi on the set of 
non-text CCs and put any false detections into the set 
N. and Di = Di * di; 
Feature=Feature- featurek ; 

end 

56



dispatching the entire expected detection rate into 12 
classifiers. 

Third, we will add a post process part after the 
cascade. The strong classifier we train in the first 
step will be used as the 13th classifier in the cascade. 
All 12 features of the CC passing through the 
previous cascade have been calculated, so only a 
linear combination operation is needed for the strong 
classifier, which can further improve the accuracy. 

The last but not least, we will combine the CCs in 
the black layer and white layer together to form the 
finial result. We will compare the adjacent CCs’ 
confidence margin which is obtained by the 13th 
classifier, and then omit the CCs with smaller margin. 
The remaining CCs are considered as final result. 
 
5. Experimental Results 
 
5.1. System architecture 
 

We implemented a prototype system and 
exhibited it in Shanghai International Industry Fair 
2004. We use Sony Ericsson S700c, which is 
attached with a 120 Mega pixel sensor, to take a 
photo of the natural sign. Then this image is 
transferred through Bluetooth OBEX protocol to a 
processing server, 1.6GHz CPU and 256M RAM. 
After seeing the image arrive, the server will do the 
detection and segmentation of the image. The 
segmented regions are regularized and then sent to 
the recognition and translation module. Finally, the 
result image is sent back to the mobile. The whole 
process is done in less than 1 s, and this demo shows 
that our segmentation algorithm is very robust and 
fast. 
 
5.2. System evaluation 
 

To better evaluate our algorithm, we built a 
database containing 368 difficult scene images 
(640x480) and labeled all the ground truth manually 
(like Fig. 10(b)). 

 
(a) Result Picture  (b) Ground Truth Picture 

Fig. 10. Evaluation the result 
We employ a very strict pixel-wise evaluation 

criterion to measure performance, showed as follows: 
( )
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error area Result GroundTruth

miss area Result GroundTruth
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The evaluation score is showed below (Table 3) 
and we can find that our algorithm is very robust: 

 
Table 3. Overall performance 

 Precision Recall 
Training set 92.3% 98 % 
Testing set 88.9% 97.5 % 
 
Besides the standard evaluation, we also establish 

experiments to prove the effect of every feature (see 
Fig. 11):  
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Fig. 11. Effect proof for every feature 

 
We omit one feature in the whole cascade and 

then evaluate the final precision without this feature. 
We can find that without the edge contrast feature, 
the overall performance drops sharply, which 
indicates the edge contrast feature contributes most 
on the performance. On the contrary, the geometric 
features almost contribute nothing in the precision. 

The average running time of the algorithm 
processing one picture is 0.34s. In a more detailed 
experiment, we also omit the features one by one to 
see their contribution to the average running time. In 
Fig. 12, we can find that without the geometric 
features, the running time will increase to 1.72s. It is 
saying that the geometric features can effectively 
discard a lot of non-text CCs in very small 
computational cost. On the contrary, stroke features 
are the most computational demanding features, but 
thanks to the previous classifiers, it will just exam 
the most promising text CCs, so it will not impose 
great burden on the algorithm efficiency.  

 

Average running time

0
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Fig. 12. Efficiency proof for every feature 
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6. Conclusions 
 

In this paper, we present a novel detection 
algorithm for scene text. In sum, our contributions 
are: 

 Propose a fast and robust decomposition 
method called NLNiblack. 

 Propose 12 novel features for connected 
component based detection method. 

 Propose an Adaboost modification to train the 
cascade on text detection problem. 

 Implement a fast and robust prototype system. 
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(p) (q) (r) (s) (t) 

(k) (l) (m) (n) (o) 

Fig. 13. More experiment results: (a)~(e),(k)~(o),(u)~(y),(F)~(J)original pictures,  
(f)~(j),(p)~(t),(A)~(E),(K)~(O) result pictures 

(u) (v) (w) (x) (y) 

(A) (B) (C) (D) (E) 

(F) (G) (H) (I) (J) 

(K) (L) (M) (N) (O) 
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