
Web-Based Deployment of Text Locating Algorithms

Simon M. Lucas and Carlos R. Jaimez González
Computer Science Department

University of Essex, UK
{sml,crjaim }@essex.ac.uk ,

Abstract

This paper describes a simple yet novel approach to the
web-based deployment and evaluation of text locating algo-
rithms.

Web-based deployment allows algorithms to be evalu-
ated by end users or researchers, without the need to install
the algorithm. This is a major advantage both for the end
user, and for the algorithm developer. The end user is pro-
tected from lengthy installation procedures, which may also
leave one’s machine in a corrupted state. The algorithm
developer is protected from theft of software or intellectual
property.

Our system provides access to a deployed algorithm in
two ways: interactive mode via a web browser, and program
access mode via a special kind of web service architecture.
The system is demonstrated with the deployment and test-
ing of one of the entries for the ICDAR 2005 text locating
competition.

1 Introduction

The Web has already dramatically improved the effi-
ciency of the research process, offering searchable access
to a vast number of papers, on-line articles, and discussion
forums. For those engaged in empirical computer science
research, however, the best may be yet to come. Currently,
the modus operandiin fields such as computer vision is
for researchers to evaluate their own algorithms on public
datasets, and then publish the results in a paper, which is
subject to a delay of at best several months, but at worst two
years or more, before publication. Competitions have been
associated with several research communities and confer-
ences, and these help in establishing the state of the art in
a particular field, but do to the effort of running them, and
of participating in them, are usually run only annually or
biennially. We argue that the software technology is now
ready to enable researchers to deploy their algorithms as
special kinds of web services as a matter of standard prac-
tice. Evaluation and comparison on a potentially vast num-
ber of datasets can then be an automatic, and on-going pro-

cess.
Web-based deployment allows algorithms to be evalu-

ated by end users or researchers, without the need to install
the algorithm. This is a major advantage both for the end
user, and for the algorithm developer. The end user is pro-
tected from lengthy installation procedures, which may also
leave one’s machine in a corrupted state. The algorithm de-
veloper is protected from theft of software or intellectual
property.

In recent years there has been a great deal of interest in
web services, andService Oriented Programming[1] has
been proposed as a new programming paradigm. However,
so far, the reality has not lived up to the hype, and in most
web services perform only simple functions, such as retriev-
ing the current price of a specified stock, for example.

On the other hand, pattern recognition researchers have
long recognized the benefits of offering web-based demon-
strations of their software. A very relevant example of this
is the Carnegie Mellon University Robotics Institute (CMU-
RI) Face Detection demonstration1. The demonstration sys-
tem works as follows. Users upload images to the system
using a simple two-field form, specifying their email ad-
dress in one field, and the URI of the image in the other
field. This latter detail means that users must be able to up-
load an image to a web server before interacting with the
application. The demonstrator then downloads the image
from the URI, informs the user of this, and specifies that an
email containing the results will be sent the next day.

We tested the system, and the email did indeed arrive
the next day, with a hyperlink to the result image, as shown
in Figure 1. Note the hyperlink to the numerical results.
An example of these numerical results is shown in Table 1.
While this data is useful, and could be used by an evalu-
ation algorithm, it would be even better if it published in
XML, instead ofad hocplain text. The problem with plain
text output is that it requires manual effort to write parsers
for it, and is extremely version sensitive i.e. if a decision is
made to change the format of the output or to add a new
attribute (e.g. such as the time taken to process the image),
then any programs used to read such data must be modified
accordingly, which can be tedious, and failure to make such

1http://vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi

101



modifications could lead to either to a program that fails to
run, or worse still, or one that appears to run but produces
incorrect results.

There are many positive aspects of this CMU-RI Demo.
It has been up and running for many months, and has suc-
cessfully processed hundreds of images. It is simple to op-
erate, though rather slow, (this may have been done deliber-
ately to reduce server load). The slow turnaround allows the
possibility of human intervention in the generated results, a
possibility that can in practical terms be avoided with an
immediate turn-around.

Figure 1. A sample gallery image from the
CMU-RI web-based face detector demonstra-
tion.

1 -- number of faces

1. Frontal Face
107 76 -- Position

6 -- size
0.44 -- confidence

Table 1. Sample Numerical Output from the
CMU-RI Face Detector Demonstration

Our system provides access to a deployed algorithm in
two ways: interactive mode via a web browser, and pro-
gram access mode via a special kind of web service archi-
tecture. Both deployment modes aim to offer immediate
results, subject to server load. Web-browser mode is useful
for users wishing to casually test systems on selected im-
ages. Program mode, on the other hand, can be used to test
deployed algorithms on hundreds of test-cases, or even to

build complete systems, where each component is a special
kind of web service. The work reported here builds on pre-
vious efforts to deploy and evaluate pattern recognition al-
gorithms using the Internet [7] or the Web (meaning HTTP
over the Internet) [6]. Compared to previous efforts, the
current work differs in two main ways. Firstly, the system
is object-based rather than service based. This overcomes
limitations in offering parameterized systems as services,
since in our system, objects can be directly constructed us-
ing the same complex sets of parameters as for local objects.
Secondly, the use of URIs to refer to all objects means that
the results of all method invocations can be serialized to an
XML file and stored on a web-site for future use. In ad-
dition to offering web-based access to client programs, we
also think that it is important where possible to offer in-
teractive access to deployed programs via a standard web
browser.

The first author is currently in the process of evaluat-
ing the software submitted to the ICDAR 2005 text locating
competition. Of the five entries received, only one of them
worked first time. Others failed to operate due to missing
library files, or compatibility problems with different ver-
sions of Java. While all the problems were eventually over-
come, this costs effort both for the competition entrant and
for the organizer. The web-based evaluation mode puts the
responsibility for making the program run firmly with the
entrant. Due to the effort involved in running competitions,
for a given field these only tend to happen once every year,
or perhaps once every two years (such as the highly success-
ful Fingerprint Verification Contests [9]). The web-based
deployment mode makes it practical for algorithms to be
continuously deployed and evaluated. Web-based deploy-
ment has the potential to turbo-charge research in this area,
by allowing good ideas that are well implemented to gain
immediate acceptance by the research community.

The main contribution of this paper is to describe a rel-
atively simple yet powerful system that we have developed
for distributed object programming over the web. The sys-
tem is called WOX, which stands for Web Objects in XML.
The rest of the paper describes why existing distributed pro-
gramming protocols are not yet ideal for our purposes, the
ideas behind WOX, and how we have already used it to de-
ploy a text locating algorithm as a web service. Note that
the problem of finding all the text regions in an image is also
referred to astext detection, but we prefer the term text lo-
cating, as detection could mean simply indicating whether
or not an image contained some text.

2 Distributed Programming and Web Ser-
vices

There are two goals to the work reported here: to make
text-locating algorithms available to end users via web-
browsers, and also to make them available to end-user client
programs.

102



The latter mode requires some form of distributed pro-
gramming, whereby a program on the client machine makes
a remote method call or a remote procedure call to a remote
machine, where for the current exercise, the remote ma-
chine can be situated anywhere on the Internet. Actually,
we make a further requirement. Due to security measures,
many institutions only allow calls to port80 or8080 through
their firewall, typically to machines running web servers
(such as Apache HTTPD), or web application servers (such
as Tomcat).

While there are many remote procedure call mecha-
nisms, such as PVM, MPI, RMI, etc. none of these are ide-
ally suited to the task at hand.

The requirement that all traffic be routed through a web
server or web application server is quite restrictive, and
restricts us to using HTTP. While it is possible to tunnel
CORBA or Java RMI calls through HTTP, this exercise may
be technically quite demanding, and also rather opaque: we
have developed a simpler, and more transparent system.

To gain a degree of language independence and HTTP
compliance, we have settled on using XML to encode the
procedure call and return messages. This also has the ad-
vantage of being human readable, which can aid debugging.

XML-RPC offers a simple mechanism for making re-
mote procedure calls through the web, but only allows for
a fixed set of data types to be used. This means that any
application specific data types must be translated into the
pre-defined types before transmission, which incurs an un-
necessary overhead in deploying a new application in this
way.

Simple Object Access Protocol (SOAP) might seem like
the obvious choice. The acronym is something of a mis-
nomer, however, since it is not simple, and it does not pro-
vide access to objects. In other words, there is no SOAP
supported way for a client to instantiate an object on a re-
mote server, and then subsequently refer to it just as they
would a local object, although of course it is possible to
program one’s way around this if necessary. Having direct
access to objects is important when dealing with stateful
programs, but is not an issue when dealing with stateless
ones. The text locating programs we have in mind for this
application are expected to be stateless, since the result of
processing an image is expected to be independent of the
previous images seen.

If we were evaluating trainable text locaters, however,
then maintaining the state of a text locater (i.e. what it had
learnt during training) would be a vital consideration.

Unlike XML-RPC, SOAP does allow for user-defined
(application specific) data-types. This is done by installing
specific serializers for specific data-types. However, the de-
fault encodings used by SOAP for arrays of primitive data-
types are extremely inefficient, and hence it is questionable
as to whether SOAP would provide any benefits for this kind
of application.

By default, SOAP uses an XML element for each ele-
ment of an array of primitive elements (such asint ). This

means that SOAP-encoded arrays can be over40 times the
size of their binary encoding. The exception to this are byte
arrays, that are encoded efficiently using base-64 (which
WOX also uses for byte arrays). Given the speed of modern
computers, and the fact that many of us have access to high
bandwidth Internet connections, this difference in encod-
ing efficiency might seem unimportant. However, table 2
emphasizes how significant this difference is, both in time
and space usage. For arrays of more than30, 000 int , the
SOAP server crashed with an out of memory error.

method Time (ms) Size (kb)
WOX 80 106
SOAP 3,300 4,200

Table 2. Time and space usage for passing an
array of 20, 000 int using WOX, and SOAP.

2.1 Representational State Transfer (REST)

Many analysts and developers have become extremely
frustrated with SOAP’s shortcomings, and there is signifi-
cant interest in an alternative paradigm called REST, which
stands for Representational State Transfer [4], [5]. Propo-
nents of REST argue that what made the Web really take off
was HTTP, and the notion of a URI - a Uniform Resource
Indicator. This gave a standard way to refer to any item of
information.

SOAP hides a set of services at a site behind a single URI
endpoint used for remote procedure calls, and the details of
the service required are encoded in the message instead of
the URI.

The idea behind REST is that URIs should be used to
name service, data structures and objects directly, in order
to exploit the full power of the web. However, REST is an
architectural style rather than a concrete protocol.

2.2 Web Objects in XML (WOX)

We have designed a new protocol for making remote
method invocations over the web, and we call this WOX, for
Web Objects in XML. WOX is based largely on the princi-
ples of REST, and each object on a server can be uniquely
identified with a URI.

While SOAP does not allow references to objects (i.e. all
parameters must be passed by value), WOX allows call by
value or call by reference. Call by reference can in some
cases make huge savings on network traffic.

The basic ideas behind WOX are as follows. A remote
method call to a WOX server specifies the URI of the object
(which could be local to that server or remote from it), the
name of the method to invoke, and the parameters to that
method. Each parameter can be passed by value, or by ref-
erence - again for references, URIs are used). The XML

103



encoding of the object specifies the object’s class. This can
then be used by the WOX server to load the appropriate
class, deserialize the object of that class, and invoke the
method on it. When the method invocation has finished, the
WOX Server will then serialize the result to XML, which
can either be sent directly back to the client, or be saved on
the server, and it’s URI sent back to the client.

The WOX system currently exists as an operational pro-
totype, which has been implemented only in Java, though
we expect that all the concepts used could be applied to any
object oriented language.

3 Requirements

In designing our system we began with a set of require-
ments functional and non-functional requirements for our
system to deploy text locating algorithms:

3.1 Functional

The functional requirements are as follows:

Interactive Testing The system must support an interac-
tive mode of usage.

Client Program Access The system must support access
to a text locating algorithm to a remote client program.

Graphical Results : the system must provide graphical re-
sults of running a text locater on an image.

XML results the system must provide detailed results in
XML, which are stored on the web server for future
reference and processing.

3.2 Non-Functional Requirements

Simplicity the system should be simple to deploy and use,
requiring no expert knowledge of web services.

Efficiency The system should not impose any unnecessary
CPU or network bandwidth overheads

Generality The system should be able to deploy algorithm
implementations written in any language

Free / Open SourceThe system should not rely on any
commercial tools - it must be free to deploy, and open
source to enable others to extend it freely.

Platform Independent The system must be easily
runnable on a variety of platforms. For example, a
system implemented using Microsoft .Net would be
unacceptable to the community.

Although still in prototype, the system already meets its
main requirements. Both the web browser interface2 and

2http://algoval.essex.ac.uk:8080/textloc/

the WOX Server3 are currently running and freely available
to interact with as a service, and to download and install as
one’s own service.

4 The Text Locating Interface

We define the interface to a text locating algorithm in
as simple a way as possible, defining data structures where
necessary, but avoiding the use of Collection classes as far
as possible, as these may be complex to serialize.

We use Java to define the interface, as this is the lan-
guage that we work with most often, and the one we al-
ways use for prototype development. The fact the Java has
an interface keyword makes the syntax especially ap-
propriate. This does not mean, however, that service im-
plementations are in any way restricted to be in Java, and
non-Java programs can either by invoked by starting a new
process from within Java, or by using the Java Native Inter-
face.

Table 3 shows the Java interface for a text locating ser-
vice. Note that this interface assumes that the text locater
implementation is pre-trained. An interesting alternative
would be to allow for a trainable interface, whereby im-
ages tagged with ground-truth rectangles could be uploaded
to the service in order to train it. This would lead to two
interesting possibilities: either that a common text locater
object could be shared among all users, or that an individ-
ual text locater be made available to each user (or indeed
many per user). The former allows for a community-wide
training process reminiscent of theOpenMindconcept [10],
while the latter allows text-locaters to be trained and tested
for individual needs.

public interface TextLocater {
public Rect[] locateText(byte[] encodedBytes);

}

Table 3. Text Locater Interface.

The only class that the interface depends on is theRect
class, shown in Table 4. This simply codes the coordinates
of a single rectangle. The interface specifies that a Text Lo-
cater should return an array of such rectangles. The actual
Rect class used by client and server may differ, but pro-
viding that they use the same fields, they will be serialized
and de-serialized in the same way by WOX, and hence be
compatible.

5 The WOX Client-Server Architecture

Figure 2 shows the WOX system architecture, and how
it relates to the text locating application. To interact with a

3http://algoval.essex.ac.uk:8080/WOXServer.jsp

104



public class Rect {
int x, y;
int w, h;

}

Table 4. The Rect class used to store rectan-
gle coordinates.

text locating WOX web service, the client application pro-
gram first instantiates an object of the appropriate class on
the server. To do this, the client passes the class name of the
object, together with any parameters, to the WOX server.
The WOX Server then attempts to instantiate an object of
that class, and then returns either a copy of the instantiated
object, or a reference to the instantiated object. In our case,
we wish to make all subsequent calls to the object on the
server, so we specify that a reference should be returned.

When the WOX client receives the URI of the newly
instantiated object, it instantiates a special proxy object,
that implements the text locater interface, and will send all
client-side method invocations on to the server object for
processing. In the case of the rectangle results, in our client
program we now wish to receive all the encoded rectangles
directly (instead of just receiving URI references to them),
so the WOX method call policy is specified accordingly.

Now the client has a reference to the server side text lo-
cater implementation object, it can call thelocate method
to find the rectangles in an image. When making this call,
we suppose that the image is stored on the client as an array
of byte. This is then encoded using the WOX serializer, and
send to the WOX server as part of a WOX method call. Note
that the client program does all the work through a proxy: it
just sees thetextLocater interface.

The WOX server then deserializes the XML method call
to a set of Java objects, attempts to find the object to in-
voke the method on, makes the invocation, and in this case
returns an array ofRect , serialized in XML. To get the re-
quired logging behaviour that would allow researchers with
the aid of a web browser to interrogate the results of any text
locating method invocations, we had to install an adapter
for this service. The reason for using an adapter is that we
wanted all the rectangles found by each text locater to be
overlaid on a copy of each original image uploaded to the
WOX server. This is not part of the normal WOX method
invocation logging process: hence the need for an adapter,
as shown in Figure 2.

5.1 XML Result File

Table 5 shows a sample XML result file (Figure 3 shows
a different image with the rectangles overlaid on it). There
are a number of issues that arise when choosing a format
for the XML results file. Currently, our main emphasis

is on rapid prototyping, so we are using the default WOX
object serialization format to produce all our XML. This
eliminates the necessity to produce helper classes to read
and write XML from objects, and avoids the need to design
any XML representations. The other issue that arises when
producing the result images with the rectangles overlaid on
them, is when to do this. Here, there are two choices. One
option is to store only the original images, then dynamically
overlay the rectangles on them for each request. This costs
more time, and is potentially brittle, since the image results
now requires special software in order to be properly inter-
preted. Here we chose the less space efficient but simpler
option of saving the overlaid images immediately when the
text locater has found the rectangles.

<object type="problems.roi.TextLocResult" id="0">
<field name="elapsedTime" type="int"

value="1063"/>
<field name="rectangles">

<array type="problems.roi.Rect" length="6"
id="1">

<object type="problems.roi.Rect" id="2">
<field name="x" type="int" value="102"/>
<field name="y" type="int" value="142"/>
<field name="w" type="int" value="182"/>
<field name="h" type="int" value="158"/>

</object>
<object type="problems.roi.Rect" id="3">

<field name="x" type="int" value="101"/>
<field name="y" type="int" value="98"/>
<field name="w" type="int" value="226"/>
<field name="h" type="int" value="114"/>

</object>
<!-- rest of array omitted -->
</array>

</field>
</object>

Table 5. An example XML results file created
by the WOX Text Locating Service Adapter.

5.2 Deployment

We believe that a strong feature of WOX is the simplicity
with which algorithms can be deployed. In order to deploy a
Java algorithm as a text locater, for example (assuming that
the WOX server has already been installed on a web appli-
cation server such as Tomcat), one has only to copy the Java
classes orjar file to the appropriate directory on the server
(web-based upload is also possible, but we’ve not yet en-
abled this, as it as potential security risks). If the algorithm
is not implementation in Java, then a Java wrapper can be
used to interact with the implementation, either using the
Java Native Interface, or by reading/writing files.

105



Figure 2. The WOX Client-Server Architecture.

6 Test Results

We tested the system first of all with some trivial text
locaters, that would simply decompress an uploaded JPEG
image. When the system passed this test, we then installed a
non-trivial text locating algorithm with reasonably high per-
formance. With the permission of Alex Chen, we installed
his submission to the ICDAR 2005 text locating contest [3]
[2]. Of all the submissions, this one is relatively fast, and
had proven to be trouble-free in operation. As we only had
access to the executable file, we used a file-based mecha-
nism to interact with it. TheTextLocater object that is
exposed on the WOX server is a simple wrapper that takes
in the submitted image, saves it to a file, invokes the Chen
algorithm, then reads the results of the text detection (which
are in XML), and returns the result to the adapter. Recall
that the adapter then overlays the detected rectangles on the
image, saves that image to a file (together with the XML),
and returns the XML-encoded rectangles to the client pro-
gram.

6.1 Evaluating Text Locaters

The system described so far caters for the web-based de-
ployment and usage of algorithms, in this case, text locat-
ing algorithms. So far, we have made no mention of how
the accuracy of these algorithms should be evaluated. Our
proposal is to keep the usage and evaluation of these algo-
rithms entirely separate. The way this works in our proto-
type is that the WOX text locating client uses the service
to locate the text rectangles in a set of images. In order to
assess the accuracy of the service, it is necessary to have ac-
cess to the ground-truth data. If the client does have access
to this, then it may run the necessary evaluation algorithms
to score the algorithm. The separation of the running of

the algorithm from its evaluation is a good idea, since it al-
lows any number of evaluation algorithms to be run on the
detected rectangles. This is especially important for text lo-
cating, where the community has yet to agree on the most
appropriate measures. The write-up of the ICDAR 2003 text
locating competition discussed two alternative metrics, for
example [8].

7 Conclusions

We have described a relatively simple method for de-
ploying text locating algorithms as interactive web appli-
cations, and as REST-based web services. We believe that
web-based deployment of these algorithms is of great im-
portance in order to speed up the way that new ideas are
propagated and assimilated in the research community. It
offers faster and easier access to newly developed programs
than would be possible with other means.

The system is reasonably efficient, and stores all the re-
sults in XML files, and as JPEG images with the rectangles
overlaid. The XML results can later be processed by a va-
riety of evaluation algorithms, and the overlaid images can
be visually inspected using a web browser.

The system is freely available, and we encourage re-
searchers to use it to make their algorithms accessible in
this way. Not only would this lead to more rapid dissem-
ination and evaluation of new algorithms and their imple-
mentations, but it would also enable new systems to be con-
structed from a range of web-based components, by merely
specifying the connections between the URIs of those com-
ponents.

106



Figure 3. Sample image of shop front that has
been uploaded to the Alex Chen text locating
algorithm. Only a cropped version of the im-
age is shown to save space, but the retrieval
rate is very good, though there are a few false
positives (which will lower the precision).

Acknowledgments

We thank Alex Chen for his cooperation in allowing us
to install his text locating algorithm in our text locating web
service.

References

[1] G. Bieber and J. Carpenter. Introduction
to service-oriented programming (rev 2.1).
http://www.openwings.org/download/
specs/ServiceOrientedIntroduction.pdf
.

[2] X. Chen and A. L. Yuille. Detecting and reading text in
natural scenes. InProceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages II:366 –
II:373, 2004.

[3] X. Chen and A. L. Yuille. A time efficient cascade for real-
time object detection: with applications for the visually im-
paired. InProceedings of the CVAVI05, IEEE Conference on
Computer Vision and Pattern Recognition Workshop, page
to appear, 2005.

[4] R. L. Costello. Building web services the rest way,
Accessed May 2005. http://www.xfront.com/REST-Web-
Services.html.

[5] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, 2000.
University of California at Irvine.

[6] S. Lucas. Web-based evaluation and deployment of pattern
recognizers. Proceedings of International Conference on
Pattern Recognition, pages 419 –422, 2002.

[7] S. Lucas and K. Sarampalis. Automatic evaluation of algo-
rithms over the internet.Proceedings of International Con-
ference on Pattern Recognition, 4:434–437, 2000.

[8] S. M. Lucas and et al. Icdar 2003 robust reading competi-
tions: Entries, results, and future directions.International
Journal of Document Analysis and Recognition, page to ap-
pear, 2005.

[9] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and A. Jain.
Fvc2000: Fingerprint verification competition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
24:402 – 412, (2002).

[10] D. Stork. The open mind initiative.
http://www.openmind.org .

107




