
A Framework Towards Realtime Detection and Tracking of Text

Carlos Merino
Departamento de Fisiologı́a
Universidad de La Laguna

38071 Santa Cruz de Tenerife, Spain
cmerino@ull.es

Majid Mirmehdi
Department of Computer Science

University of Bristol
Bristol BS8 1UB, England

majid@cs.bris.ac.uk

Abstract

We present a near realtime text tracking system capable
of detecting and tracking text on outdoor shop signs or in-
door notices, at rates of up to 15 frames per second (for
generous 640 × 480 images), depending on scene complex-
ity. The method is based on extracting text regions using a
novel tree-based connected component filtering approach,
combined with the Eigen-Transform texture descriptor. The
method can efficiently handle dark and light text on light
and dark backgrounds. Particle filter tracking is then used
to follow the text, including SIFT matching to maintain re-
gion identity in the face of multiple regions of interest, fast
displacements, and erratic motions.

1. Introduction

Tracking text is an important step towards the identifica-
tion and recognition of text for outdoor and indoor wearable
or handheld camera applications. In such scenarios, as the
text is tracked, it can be sent to OCR or to a text-to-speech
engine for recognition and transition into digital form. This
is beneficial in many application areas, such as an aid to the
visually impaired or for language translation for tourists.
Furthermore, the ability to automatically detect and track
text in realtime is of use in localisation and mapping for
human and robot navigation and guidance.

A review [9] and some collections of recent works [2, 1]
in camera-based document analysis and recognition, high-
light substantial progress in both single image and multi-
frame based text analysis. Overall, there have been rela-
tively few works on general text tracking. Multiframe text
analysis has been mainly concerned with improving the text
in a super-resolution sense [12] or for continuous recogni-
tion of text within a stationary scene e.g. on whiteboards or
in slideshows [18, 20].

A directly related work in the area of general scene text
tracking is by Myers and Burns [13] which successfully

tracks scene text undergoing scale changes and 3D motion.
However, this work applies to tracking in batch form and is
not a realtime solution. Also in [13], the text detection is
done by hand, manually indicating a starting bounding box
for the tracking system to follow. Another work of inter-
est is Li et al.[8] in which a translational motion tracking
model was presented for caption text, based on correlation
of image blocks and contour based stabilisation to refine the
matched position. Less directly related, in [16], seven sim-
ple specific text strings were looked for by a roving camera
from a collection of 55 images in an application to read door
signs.

The focus of this paper is on the development of a re-
silient text tracking framework, using a handheld or wear-
able camera, as a precursor for our future work on text
recognition. The only assumption we make is that we are
looking for larger text sizes on shop and street signs, or in-
door office boards or desktop documents, or other similar
surfaces. Our proposed method is composed of two main
stages: candidate text region detection and text region track-
ing. In the first stage, regions of text are located using a
connected components approach combined with a texture
measure step [17] which to the best of our knowledge has
never been applied to text detection; this provides candi-
date regions or components which are then grouped to form
possible words. The method is highly accurate but not in-
fallible to noise, however, noisy or non-text candidate re-
gions are not detected as persistently as true text regions,
and can be rejected forthright during the tracking step. In
the second stage, particle filtering is applied to track the text
frame by frame. Each hypothesised system state is repre-
sented by a particle. The particles are weighted to represent
the degree of belief on the particle representing the actual
state. This non-linear filtering approach allows very robust
tracking in the face of camera instability and even vigorous
shakes. SIFT matching is used to identify regions from one
frame to the next. We describe the details of this framework
in the next few sections.

10



2. Background

It should be noted that there is a significant body of work
on detecting (graphical) text that has been superimposed in
images and videos, as well as in tracking such text. Exam-
ple works are [10, 8]. In this work we concentrate solely on
text embedded in natural scenes.

Segmentation of text regions involves the detection of
text and then its extraction given the viewpoint. For exam-
ple, almost each one of the works published in [2, 1] present
one method or another for text segmentation, usually from a
fronto-parallel point of view. Example past works consider-
ing other viewpoints and recovering the projective views of
the text are [4, 14, 13]. Although in this work we engage in
both segmenting and tracking text involving varying view-
points, actual fronto-parallel recovery is not attempted. This
is a natural step possible from the tracking motion informa-
tion available and will be a key focus of our future work.

An issue of note is the problem of scale. Myers and
Burns [13] dealt with this by computing homographies of
planar regions that contain text, and when computationally
tractable, this could be useful for any (realtime) text track-
ing application. Here, we are detecting text dynamically,
hence at some smaller scales our detector will simply not
find it, until upon approach it becomes large enough.

3. Methodology

The text tracking framework proposed here is based
around the principle of a tracker representing a text entity
- a word or group of words that appear together in an im-
age as a salient feature, where each word comprises two or
more components or regions. Trackers are dynamically cre-
ated when a new text entity is detected; they follow the text
frame to frame, and they get removed when the text cannot
be detected anymore. Partial occlusion is dealt with, and
in cases of full occlusion, a new tracker starts once the text
is back in view. Our text tracking framework involves text
segmentation, text region grouping, and tracking, including
dynamic creation and removal of trackers.

3.1. Text segmentation

The text segmentation stage uses a combination of a con-
nected components (CC) approach and a region filtering
stage, with the latter involving the novel application to text
analysis of a texture measure. The resulting component re-
gions are then grouped into text entities.
3.1.1 Connected component labelling Following CC la-
belling in [7], León et al employed a tree pruning approach
to detect text regions. They thresholded the image at every
grey level, and built a Max-tree representation where each
node stored the CC of the corresponding threshold level.

Level 2 
White 

Level 3 
Black 

Level 1 
Black 

CC region finding
and tree building

Figure 1. A synthetic sample image and its
corresponding tree of connected regions.

The leaves of the tree represented the zones whose grey lev-
els were the highest in the image. For detection of dark text
over bright backgrounds, they built a different tree, a Min-
tree, where the leaves represented the zones with the lowest
grey levels in the image. This two pass treatment of bright
text and dark text is very common in text detection algo-
rithms.

We improve on the tree region labelling method in [7]
by introducing a simple representation that allows efficient,
one pass detection of bright text (white over black) and dark
text (black over white) in the same tree. Initially, simple lo-
cal adaptive thresholding is applied to the source frame. We
empirically fixed the local threshold window size to 17×17
throughout all our experiments. The threshold was the mean
grey level value of the window itself. Connected component
region labelling is then performed on the thresholded im-
age. This labelling builds a tree of connected regions, with
the outermost region the root of the tree and the innermost
regions the leaves. We allow the regions to toggle their label
value from black to white as we go down each level of the
tree. The tree represents the nesting relationship between
these regions. Each node of the tree keeps only the contour
around the border of the regions (see Figure 1).

Once the tree is built, it is walked depth-first with the
objective to filter out the regions that are not text. Each
node of the tree is classified as text or non-text during the
walk using region filtering as described later below.

Usually, on real-world images with scene text, structural
elements (such as sign borders, posters frames, etc.) can
exhibit characteristics of text, such as high contrast against
their backgrounds or strong texture response. These ele-
ments can be easily discarded (as long as they are not at a
leaf) using the nesting relationship present in the proposed
tree. When a node has children already classified as text,

11



Discarded because
1, 2, 3, H, I, J

are below it

Discarded because
E, F, G are 

below it

Figure 2. Parent nodes are discarded when
children are classified as text.

it is discarded as non-text, despite the text classifying func-
tions may having marked it as text. This discards most of
the non-text structural elements of the text (Figure 2).
3.1.2 Region filtering To classify text regions we apply
three tests in cascade, meaning that if a test discards a re-
gion as non-text, no more tests are applied to it. This is
in a similar fashion to Zhu et al. [21] who used 12 classi-
fiers. In our case, the fewer tests are important for real time
processing, and coarse, but computationally more efficient
tests are applied first, quickly discarding obvious non-text
regions, and slower, more discriminative tests are applied
last, where the number of remaining regions is fewer. The
test we apply are on size, border energy, and an eigenvector
based texture measure.

Size - Regions too big or too small are discarded. The
thresholds here are set to the very extreme. Very small re-
gions are discarded to avoid noise. This may still drop char-
acters, but they probably would be otherwise impossible to
recognise by OCR and as the user gets closer, they are more
likely to be picked up anyway. Large regions are discarded
because it is unlikely that a single character occupies very
large areas (over half the size) of the image.

Border energy - A Sobel edge operator is applied to all
the points along the contour of each component region r
and the mean value is obtained:

Br =

∑Pr

i=1

√
(G2

ix + G2
iy)

Pr
(1)

where Pr denotes the number of border pixels in region r,
and Gx and Gy represent the Sobel gradient magnitudes.
This is referred to as the border energy and provides a
measurement of region to background contrast. Regions
with border energy value below a very conservatively fixed
threshold are discarded. This removes regions that usually
appear in less textured and more homogeneous regions.

Jiang et al [6] used a three level Niblack threshold [19]

Figure 3. Original image and its Eigen-
Transform response.

in their text detection technique with good results. This in-
troduces the local pixel values variance into the threshold
calculation. However, this involves computing the standard
deviation of local pixel values and we have found that do-
ing a simpler adaptive threshold and afterwards discarding
the noisy regions is faster. Also, the proposed tree walking
algorithm transparently manages bright-text and dark-text
occurrences on the same image without the need to apply a
three level threshold image.

Texture measure - For this final decision-making step we
apply a texture filter whose response at positions within the
region pixels and their neighbourhoods is of interest.

We have previously combined several texture measures
to determine candidate text regions, see [3]. These were
mainly tuned for small scale groupings of text in the form of
paragraphs. Although quite robust, the need for faster pro-
cessing precludes their combined use. Here, we introduce
the use of the Eigen-Transform texture operator [17] for use
in text detection. It is a descriptor which gives an indication
of surface roughness. For a square w ×w matrix represent-
ing a pixel and its neighbouring grey values, the eigenval-
ues of this matrix are computed: ‖λ1‖ ≥ ‖λ2‖ ≥ . . . ‖λw‖.
The largest l eigenvalues are discarded since they encode
the lower frequency information of the texture. Then, the
Eigen-Transform of the central pixel is the mean value of
the w − l + 1 smaller magnitude eigenvalues:

Γ(l, w) =
1

w − l + 1

w∑
k=l

‖λk‖ (2)

The Eigen-Transform has a very good response to tex-
ture which exhibit high frequency changes, and we found
in our experiments that it responds to text very well for this
reason, see a simple example in Figure 3 where both the text
and the background texture are picked up well. It can, how-
ever, be a fairly slow operator, but fortunately we need only
apply it to the component region pixels. Indeed, we com-
pute the Eigen-Transform only on some regularly sampled
points inside the bounding box of each region of interest. A
key factor in (2) is the size of w. This is determined auto-
matically by setting it dynamically according to the height

12



(a) (b)

(c) (d)

(e) (f)

Figure 4. Steps of the text segmentation and
grouping. (a) Original image, (b) Adaptive
threshold, (c)–(e) result after filtering by size,
border energy and Eigen-transform measure,
(f) perceptual grouping.

of the region under consideration. Then l is set to be a frac-
tion of w.

The result of the text segmentation stage is a set of can-
didate regions with a high likelihood of being text. For each
region, the centre position of its bounding box is stored as a
component ci into the observation function yk of the parti-
cle filter (see section 3.2). As a result of the CC region tree
design, and taking into account only the contour and not
the contents, both inverted text (light on dark) and normal
text (dark on light) are detected in the same depth-first pass.
Figure 4 shows an example result highlighting each of the
text segmentation and grouping steps.
3.1.3 Perceptual text grouping - The text grouping stage
takes the regions produced by the text segmentation step
and makes compact groups of perceptually close or salient
regions. We follow the work by Pilu [14] on perceptual or-
ganization of text lines for deskewing. Briefly, Pilu defines
two scale-invariant saliency measures between two candi-
date text regions A and B: Relative Minimum Distance λ
and Blob Dimension Ratio γ:

λ(A, B) =
Dmin

Amin + Bmin
γ(A, B) =

Amin + Amax

Bmin + Bmax
(3)

where Dmin is the minimum distance between the two re-
gions, and Amin, Bmin, Amax and Bmax are respectively the
minimum and maximum axes of the regions A and B. Pilu’s

text saliency operator between two text regions is then:

P(A,B) = N(λ(A,B), 1, 2) · N(γ(A,B), 0, 4) (4)

where N(x, μ, σ) is a Gaussian distribution with mean μ
and standard deviation σ whose parameters were deter-
mined experimentally in [14]. To reduce the complexity of
comparing all the regions against each other, we construct a
planar graph using Delaunay triangulation, with the region
centres as vertices. The saliency operator is then applied
to each edge of this graph, keeping only the salient ones
and removing the rest. This edge pruning on the graph ef-
fectively divides the original graph into a set of connected
subgraphs. Each subgraph with more than two vertices is
considered a text group. This additional filtering step re-
moves a number of isolated regions (see Figure 4(f)).

3.2. Text tracking

Particle filtering, also known as the Sequential Monte
Carlo Method, is a non-linear filtering technique that re-
cursively estimates a system’s state based on the available
observation. In an optimal Bayesian context, this means
estimating the likelihood of a system’s state given the ob-
servation p(xk|yk), where xk is the system’s state at frame
k and yk = {c1, . . . , cK} is the observation function.

Each hypothesised new system state at frame k is rep-
resented by a particle resulting in {x(1)

k ,x(2)
k , . . . ,x(N)

k },
where N is the number of particles. Each particle x(n)

k

has an associated weight
{

(x(1)
k , w

(1)
k ), . . . , (x(N)

k , w
(N)
k )

}
where

∑s
i=1 w

(i)
k = 1. Given the particle hypothesis x(n)

k ,
the weights are proportional to the likelihood of the obser-
vation, p(yk|x(n)

k ). For a detailed explanation of particle
filter algorithms and applications, see e.g. [5].

Particle filtering is the ideal method given the instabil-
ity of the handheld or wearable camera in our application
domain. We build on the particle tracking framework de-
veloped in [15] for simultaneous localisation and mapping
(SLAM). Here we want to independently track multiple in-
stances of text in the image, with a simple state represen-
tation. Thus, each text entity is assigned a particle filter,
i.e. a tracker, responsible of keeping its state. The main
components to now deal with in a particle filter implemen-
tation are the state representation, the dynamics model and
the observation model.
3.2.1 State representation - The tracker represents the
evolution over time of a text entity. It has a state that tries
to model the apparent possible changes that the text entity
may experience in the image context. The model has to be
rich enough to approximate the possible transformations of
the text but at the same time simple enough to be possible
to estimate it in real time.

13



The state of a tracker at frame k is represented by a
2D translation and rotation: xk = (tx, ty, α). We found
this simple state model provides sufficient accuracy given
the degree of movement within consecutive frames, but
is also important in computational savings towards a real-
time model1. This state defines a relative coordinate space,
where the x-axis is rotated by an angle α with respect to the
image, and its origin is at (tx, ty) in image coordinates.

Let’s say a text entity contains M components. Its
tracker preserves a list of M features Z = {z1, . . . , zM}
where each feature zi is a 2D position lying in the tracker’s
relative coordinate space. Each feature represents a text
component being tracked, and it is fixed during tracker ini-
tialization. We define the transformation function Ψ(zi,xk)
as the coordinate transform (translation and rotation) of a
feature position from the state’s coordinate space to image
coordinates. This is used during weighting. Additionally,
each feature is associated with a set of SIFT descriptors
[11] computed only once during the tracker initialization.
They give the ability to differentiate between candidate text
components, providing a degree of multiscale and rotation
invariance to the feature matching as well as resilience to
noise and change in lighting conditions2.

Figure 5 shows the current state representation xk of
a tracker at frame k which has M = 4 features Z =
{z1, z2, z3, z4}. For ease of exposition, all the features
are visualised to lie along the x-axis of the tracker’s co-
ordinate space. Further, the figure shows another particle
x(1)

k representing an alternative state hypothesis. The four
features zi ∈ Z are mapped to the particle’s relative coor-
dinate space to show the same set of features from a dif-
ferent reference frame. The observation function yk, with
yk = {c1, c2, c3, c4} representing the center points of the
candidate text components is also shown.
3.2.2 Dynamics model - The dynamics model defines the
likelihood of a system state transition between time steps
as p(xk|xk−1). It is composed of a deterministic part -
a prediction of how the system will evolve in time, and a
stochastic part - the random sampling of the particles around
the predicted position. Examples of prediction schemes are
constant position, constant velocity and constant acceler-
ation. Examples of stochastic functions are uniform and
Gaussian random walks around an uncertainty window of
the predicted position.

The selection of an appropriate dynamics model is cru-
cial for a tracking system to be able to survive unpredictable
movements, such as those caused by wearable or hand-

1However, we intend to investigate more complex motion models in
future while ensuring the realtime aspects of the work are not compromised

2Note to Reviewers: We have found the SIFT matching to grossly slow
our system down. By the time of this Workshop we will have implemented
and hope to report faster invariant feature matching using e.g. the Hessian
Affine or MSER which will additionally give a greater degree of affine
invariancy

z4

z3

z1

z2

x k

x k
(1)

α

c1 c2 c3 c4

(t ,t )x y

z1 z2 z3 z4

Figure 5. State model of one tracker, xk =
(tx, ty, α), with 4 tracked features Z =
{z1, z2, z3, z4}. A particle, x(1)

k , shows a differ-
ent state hypothesis.

held camera movements. Pupilli [15] concluded that for
such scenarios a constant position prediction model with
a uniform or Gaussian random walk would provide better
results, due to the unpredictable nature of erratic move-
ments. Here, we follow this advice to use a constant po-
sition model with random Gaussian walk around the last
state, i.e. p(xk|xk−1) = N(xk−1,Σ). The covariance ma-
trix Σ defines the particle spread which is empirically set
to a generous size, and automatically reduced via an an-
nealling process as in [15].
3.2.3 Observation model - Given a particle state hypothe-
sis, the observation model defines the likelihood of the ob-
servation, p(yk|x(n)

k ). The weight of each particle is calcu-
lated based on the comparison from projected features’ po-
sitions and actual text components found in the image. An
inlier/outlier likelihood proposed by Pupilli [15] is used.

For each tracked feature zi ∈ Z, a set of candidate com-
ponents yki ⊆ yk {(z1,yk1), (z2,yk2), . . . , (zM ,ykM )}
is computed, based on their matching to the SIFT descrip-
tors previously stored for each feature. This reduces the
search space of the particles and gives robustness to the
tracking process.

The weight of a particle is proportional to the number of
observed candidate components inside a circular region of
radius ε around each tracked feature. First an inlier thresh-
old function τ(a,b) is defined:

τ(a,b) =
{

1 if d(a,b) < ε
0 otherwise (5)

where d(a,b) is the distance between two points. Then, the
likelihood is:

p(yk|x(n)
k ) ∝ exp

⎛
⎝ ∑

zi∈Z

∑
cj∈yki

τ
(
Ψ(zi,x

(n)
k ), cj

)⎞
⎠

(6)

14



where Ψ(zi,x
(n)
k ) is the transformation function defined in

subsection 3.2.1. Figure 6 shows the weighting process of
one feature z2 for two different hypothesis, x(1)

k and x(2)
k .

The latter is nearer to the actual state of the system and
gets a greater weight. Note that for illustration purposes
we are considering here that the candidate group compo-
nents for feature z2 is all the observation: yk2 = yk =
{c1, c2, c3, c4}.

ε
inlier count = 2

ε
inlier count = 3

z2

z2

c1 c2 c3 c4

c1 c2 c3 c4

xk
(1)

xk
(2)

Figure 6. Inlier count of feature z2 for two dif-
ferent particles x(1)

k and x(2)
k .

3.2.4 Bounding box computation - Bounding box compu-
tation is crucial towards next possible stages such as extrac-
tion, recognition or superresolution. Thus, it is important
that it is as stable and tight as possible. Once a posterior
state is established by the particle filter, each feature zi ∈ Z
is assigned a Most Likely Estimate (MLE), that is the text
component cj ∈ yk that most likely matches it. In Figure
5, the MLE of each feature is marked with an arrow. Not all
tracked features will have a MLE each frame, as sometimes
they are not found due to blur, clutter or occlusion.

After perceptual text grouping, each observed text com-
ponent belongs to a group, and thus the MLE of each tracker
feature also belongs to a group. The Most Likely Group
(MLG) of a feature is the group to which this feature’s MLE
belongs to. Given this, the tracker’s bounding box is then
obtained by joining the bounding boxes of its MLGs.
3.2.5 Tracker creation and removal - Trackers are dynam-
ically created when new text is detected, and removed when
their associated text entity can no longer be found. After
the grouping stage, any text group detected is a potential
text entity to be tracked. But some of these groups may
belong to text entities already being tracked. The tracking
stage identifies the tracked components in the image via the
MLE and MLG mechanisms. After the tracking cycle, any
unidentified remaining groups are passed to a new tracker.

Newly created trackers must continuously track their text
for a number of frames to be considered stable. Trackers
that fail to comply with this are promptly removed. The
tracker removal mechanism is very simple. After a consec-
utive number of frames without a match, the track is con-
sidered lost and removed. Should the same text entity then
reappear, it will be assigned a new tracker.

4. Results

The system was tested on a variety of typical outdoor and
indoor scenarios, e.g. a hand-held camera while passing
shops or approaching notices, posters, billboards etc. We
present here the results from four typical scenarios. The
full video sequences along with other results, including a
sequence from [13], are also available online3.

The results shown are: Figure 7: ‘BORDERS’ - walk-
ing in a busy street with several shop signs overhead, Fig-
ure 8: ‘UOB’ - walking past a signboard including an
occlusion in a highly textured scene background, Figure
9‘ST. MICHAEL’S HOSPITAL’ - a traffic sign with both
bright and dark text, complex background and significant
perspective change, and Figure 10: ‘LORRY’ - with text
also undergoing viewpoint changes. All sequences were at
640 × 480 resolution recorded at 15 fps with a consumer
grade photo/video camera (Nikon Coolpix P2).

Table 1 shows the performance of the algorithm for the
different sample scenes on an Intel Pentium IV 3.2Ghz pro-
cessor. The results show the performance of the text seg-
mentation and grouping subsystem alone, and the whole
tracking process. Text segmentation is very fast. When
measured off-line, the system was able to compute the re-
sults faster than the actual frame rate of the sequences. With
the tracking, the performance of the system is close to 10
fps on average, depending on the complexity of the scene,
making it promisingly close to realtime. For a simple scene
with little background and one 5-character word, the system
could track it effortlessly at 15fps. While the particle filter-
ing framework is relatively fast, the SIFT matching of fea-
tures reduces the performance when the number of candi-
date regions is large, such as in very complex backgrounds,
e.g. in Fig. 8. A greater number of false positives (due
to the vegetation) produced during segmentation put more
stress on the tracking stage, which however rejected these
regions due to the instability and lack of longevity of their
trackers. Notice also in Fig. 8, the tracker survives the oc-
clusion by the lamppost.

4.1. Discussion

The focus of this paper has been on a framework to track
text as robustly and continuously as possible, bearing in

3Please see http://vision.cs.bris.ac.uk/texttrack/

15



Figure 7. Example scene 1 - BORDERS - notice several BORDERS signs come along in the sequence.

Figure 8. Example scene 2 - UOB including occlusion, also with much other texture.

Figure 9. Example scene 3 - ST. MICHAEL’S HOSPITAL - two regions, dark over light and vice versa.

Figure 10. Example scene 4 - LORRY

16



Table 1. Performance of the algorithm in
mean frames per second.

Text segmentation Full algorithm
Scene 1 31.9 fps 13.2 fps
Scene 2 21.3 fps 4.9 fps
Scene 3 30.7 fps 9.6 fps
Scene 4 32.0 fps 10.6 fps

mind that momentary loss of a text region is not disastrous
in terms of recognition. Once stable tracking is obtained af-
ter a few frames, the motion information could be used for
fronto-parallel recovery as well as generation of a super-
resolution representation for better OCR, e.g. as in [12]. In
our system, it is more likely that text is missed if it is at
sharp perspective viewpoints, than for a non-text region to
be tracked with significant stability. We had no such non-
text cases, but even if there were, one can assume that OCR
would reject it at the next stage.

Some shortcomings of our work are: (1) the robustness
of our tracker improves further, in terms of dropping a track
only to be picked up again instantly, when we use a more
complex motion model, but this means we move further
away from a realtime goal, (2) SIFT has limited robustness
to viewpoint variations, so big changes of point of view will
make the trackers lose the features, and it is by far the slow-
est part of the system, however we are at the time of writ-
ing experimenting with a new method, (3) Our results can
not be claimed to be fully realtime, however we are near
enough and believe we can achieve it in our future short-
term work, (4) even though our few thresholds are fixed they
naturally can affect the quality of the results; we aim to ad-
dress these by applying learning techniques to automate the
process where necessary.

5. Conclusion

In this paper we have presented a close to realtime tech-
nique to automatically detect and track text in arbitrary nat-
ural scenes. To detect the text regions, a depth-first search
is applied to a tree representation of the image’s connected
components, where each leaf in the tree is examined for
three criteria. Amongst these criteria is the use of the Eigen-
Transform texture measure as an indicator of text. This
stage of the algorithm detects both bright and dark text in
a single traversal of the tree. Following perceptual group-
ing of the regions into text entities, particle filtering is ap-
plied to track them across sequences involving severe mo-
tions and shakes of the camera. We have established a sig-
nificant framework and can start to improve its individual
components in our future work to better our results.

Acknowledgements

Carlos Merino is funded by FIT-350300-2006-92 project
from the Spanish Ministerio de Industria, Turismo y Com-
ercio, through the European Regional Development Fund.
This work was carried out partly at Bristol University and
partly at Universidad de La Laguna and the Instituto Tec-
nológico de Canarias.

References

[1] Proc. of the 1st Workshop on Camera Based Document Anal-
ysis and Recognition (CBDAR), August 2005.

[2] Special issue on camera-based text and document recog-
nition. International Journal on Document Analysis and
Recognition, 7(2–3), July 2005.

[3] P. Clark and M. Mirmehdi. Recognising text in real scenes.
IJDAR, 4:243–257, 2002.

[4] P. Clark and M. Mirmehdi. Rectifying perspective views of
text in 3d scenes using vanishing points. Pattern Recogni-
tion, 36(11):2673–2686, 2003.

[5] A. Doucet, J. de Freitas, and N. Gordon. Sequential Monte
Carlo Methods in Practice. Springer-Verlag, 2001.

[6] R.-J. Jiang, F.-H. Qi, L. Xu, G.-R. Wu, and K.-H. Zhu. A
learning-based method to detect and segment text from scene
images. Journal of Zhejiang University, 8(4):568–574, 2007.

[7] M. León, S. Mallo, and A. Gasull. A tree structured-based
caption text detection approach. In Fifth IASTED VIIP, 2005.

[8] H. Li, D. Doermann, and O. Kia. Automatic text detection
and tracking in digital video. IEEE-IP, 9(1):147–156, 2000.

[9] J. Liang, D. Doermann, and H. Li. Camera-based analysis of
text and documents: a survey. IJDAR, 7(2):84–104, 2005.

[10] R. Lienhart. Indexing & retrieval of digital video sequences
based on text recognition. In ICM, pages 419–420, 1996.

[11] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[12] C. Mancas-Thillou and M. Mirmehdi. Super-resolution text
using the teager filter. In CBDAR05, pages 10–16, 2005.

[13] G. K. Myers and B. Burns. A robust method for tracking
scene text in video imagery. In CBDAR05, 2005.

[14] M. Pilu. Extraction of illusory linear clues in perspectively
skewed documents. In CVPR, pages 363–368, 2001.

[15] M. Pupilli. Particle Filtering for Real-time Camera Locali-
sation. PhD thesis, University of Bristol, October 2006.

[16] H. Shiratori, H. Goto, and H. Kobayashi. An efficient text
capture method for moving robots using dct feature and text
tracking. In ICPR, pages 1050–1053, 2006.

[17] A. Targhi, E. Hayman, J. Eklundh, and M. Shahshahani. The
eigen-transform & applications. In ACCV, pages I:70–79,
2006.

[18] M. Wienecke, G. A. Fink, and G. Sagerer. Toward auto-
matic video-based whiteboard reading. IJDAR, 7(2):188–
200, 2005.

[19] L. L. Winger, J. A. Robinson, and M. E. Jernigan. Low-
complexity character extraction in low-contrast scene im-
ages. IJPRAI, 14(2):113–135, 2000.

[20] A. Zandifar, R. Duraiswami, and L. S. Davis. A video-based
framework for the analysis of presentations/posters. IJDAR,
7(2):178–187, 2005.

[21] Z. Zhu, F. Qi, M. Kimachi, and Y. Wu. Using adaboost to
detect & segment characters in natural scenes. In CBDAR05,
2005.

17




