
Camera Based Document Image Retrieval
with More Time and Memory Efficient LLAH

Tomohiro Nakai, Koichi Kise, Masakazu Iwamura
Graduate School of Engineering, Osaka Prefecture University

1-1 Gakuen-cho, Naka, Sakai, Osaka, 599-8531 Japan
nakai@m.cs.osakafu-u.ac.jp, �kise, masa�@cs.osakafu-u.ac.jp

Abstract

In this paper, we propose improvements of our camera-
based document image retrieval method with Locally Likely
Arrangement Hashing (LLAH). While LLAH has high accu-
racy, efficiency and robustness, it requires a large amount
of memory. It is also required to speed up the retrieval
of LLAH for applications to real-time document image re-
trieval. For these purposes, we introduce the following two
improvements. The first one is reduction of the required
amount of memory by removing less important features for
indexing from the database and simplifying structure of the
database. The second improvement is to reduce explor-
ing alternatives during the retrieval process. From the ex-
perimental results, we have confirmed that the proposed
improvements realize reduction of the required amount of
memory by about 80% and that of processing time by about
60%.

1. Introduction

Document image retrieval is a task of finding document
images relevant to a given query from a database of a large
number of document images. Various types of queries have
been employed in document image retrieval [1]. Camera-
based version of document image retrieval is characterized
by its queries obtained by capturing documents with cam-
eras. It has excellence that it enables linking paper docu-
ments to various services. In other words, paper documents
can be viewed as media for providing services to the user.
For example, the user can access relevant web sites by cap-
turing a paper document when their URLs are related to the
document images in the database.

We have already proposed a camera-based document im-
age retrieval method based on a hashing technique called
Locally Likely Arrangement Hashing (LLAH). LLAH is
characterized by its accuracy, efficiency and robustness.

It has been shown that more than 95% accuracy is real-
ized with about 100 ms retrieval time on a 10,000 pages
database[2]. Such accuracy and efficiency are realized by
stable and discriminative features of LLAH. It has also been
confirmed that LLAH is robust to perspective distortion, oc-
clusion and non-linear surface deformation of pages which
are typical problems for camera-captured documents [3, 4].
Features based on geometric invariants defined in local ar-
eas realize robustness to those problems.

In exchange for the accuracy and the robustness, LLAH
requires a large amount of memory. For example, in or-
der to realize accurate retrieval on a 10,000 pages database,
2.6GB memory is needed. Such heavy consumption of
memory limits the scalability of LLAH. For the retrieval
of 100,000 pages, for instance, the memory space is beyond
what can be easily prepared. In addition, since real-time
document image processing using cameras has significant
usability [5], an application of LLAH to real-time document
image retrieval is desired. In order for LLAH to be used in
a real-time processing, further speeding up of its retrieval
process is necessary.

In this paper, we propose some improvements of LLAH
that solve the above problems. The basic idea of the im-
provement for the memory consumption is to remove un-
reliable features for indexing and simplify the structure of
the database. As for the speeding up of processing, we in-
troduce a feature-based method of reducing the number of
combinations that need to be explored during the retrieval.
From the experimental results using 10,000 document im-
ages, we have confirmed that the required amount of mem-
ory and the processing time are 1/5 and 2/5 of the original,
respectively. We also show that the improved version of
LLAH scales quite well: the memory consumption and the
processing time is almost constant up to the database of size
10,000 images.

21

Feature Point Extraction

Document Image

Database

Query

Image

Result

Storage Retrieval

Calculation of Features

Image for

Database

Output

Input

Figure 1. Overview of processing.

2. Document image retrieval with original
LLAH

We first explain the original LLAH and the retrieval pro-
cess with it.

2.1. Overview of processing

Figure 1 shows the overview of processing. At the step of
feature point extraction, a document image is transformed
into a set of feature points. Then the feature points are in-
putted into the storage step or the retrieval step. These steps
share the step of calculation of features. In the storage step,
every feature point in the image is stored independently into
the document image database using its feature. In other

words, a document image is indexed by using each feature
point. In the retrieval step, the document image database
is accessed with features to retrieve images by voting. We
explain each step in the following.

2.2. Feature point extraction

An important requirement of feature point extraction is
that feature points should be obtained identically even under
perspective distortion, noise, and low resolution. To satisfy
this requirement, we employ centroids of word regions as
feature points.

The processing is as follows. First, the input image
(Fig. 2(a)) is adaptively thresholded into the binary im-
age (Fig. 2(b)). Next, the binary image is blurred using
the Gaussian filter. Then, the blurred image is adaptively
thresholded again (Fig. 2(c)). Finally, centroids of word re-
gions (Fig. 2(d)) are extracted as feature points.

2.3. Calculation of features

The feature is a value which represents a feature point of
a document image. In order to realize successful retrieval,
the feature should satisfy the following two requirements.
One is that the same feature should be obtained from the
same feature point even under various distortions. If differ-
ent features are obtained from the same feature point at stor-
age and retrieval processes, the corresponding document
image cannot be retrieved. We call this requirement “stabil-
ity of the feature”. The other requirement is that different
features should be obtained from different feature points. If
the same feature is obtained from different feature points,
not only the corresponding document image but also other
document images are retrieved. We call this requirement
“discrimination power of the feature”. Both two require-

(a) Input image. (b) Binarized image. (c) Connected components. (d) Feature points.

Figure 2. Feature point extraction.

22

p

�

� �

�

�

�

�

� p
�

�

�

�

�

�

�
�

Figure 3. Eight nearest points of � in two im-
ages captured from different viewpoints. A
circled number indicates its order of distance
from �. Different points shown as black cir-
cles come up due to perspective distortion.

ments, the stability and the discrimination power, have to
be satisfied for successful retrieval.
(1) Stability

In the cases of occlusion, the whole image of a docu-
ment is not captured. In order to realize stability against
occlusion, a feature has to be calculated from a part of doc-
ument image. In LLAH, each feature point has its feature
calculated from an arrangement of its neighboring points.
Since features are calculated in a local part of a document
image, the same feature can be obtained as long as the same
part is captured.

Camera-captured images generally suffer from perspec-
tive distortion. In order to calculate features stable against
perspective distortion, a geometric invariant is used. For
this purpose, one may think the cross-ratio which is invari-
ant to perspective transformation is appropriate. However,
it is confirmed that an affine invariant gives higher accu-
racy than the cross-ratio [2]. This is because perspective
transformation in a local area can be approximated as affine
transformation and the affine invariant is more robust to
change of feature points than the cross-ratio.

In this paper we utilize an affine invariant defined using
four coplanar points ABCD as follows:

� �������

� �������
(1)

where P(A,B,C) is the area of a triangle with apexes A, B,

and C.
The simplest definition of the feature of a feature point

� is to use 4 nearest feature points from �. However, near-
est feature points can change by the effect of perspective
distortion as shown in Fig. 3. Hence the invariant from 4
nearest points is not stable. In order to solve this problem,
we utilize feature points in a broader local area. In Fig. 3,
it is shown that 6 points out of 7 nearest points are com-
mon. In general, we assume that common� points exist in
	 nearest neighbors under some extent of perspective distor-
tion. Based on this assumption, we use common � points
to calculate a stable feature. As shown in Fig. 4, common�
points are obtained by examining all possible combinations
������ ������ � � � � ��������� of � points from 	 nearest
points. As long as the assumption holds, at least one com-
bination of � points is common. Thus a stable feature can
be obtained.
(2) Discrimination power

The simplest way of calculating the feature from �

points is to set� � � and calculate the affine invariant from
these 4 points. However, such a simple feature lacks the dis-
crimination power because it is often the case that similar
arrangements of 4 points are obtained from different fea-
ture points. In order to increase the discrimination power,
we utilize again feature points of a broader area. It is per-
formed by increasing the number��
 ��. As � increases,
the probability that different feature points have similar ar-
rangement of � points decreases. As shown in Fig. 5,
an arrangement of � points is described as a sequence of
discretized invariants ������ ����� � � � � ��������� calculated
from all possible combinations of 4 feature points taken
from� feature points.

2.4. Storage

Figure 6 shows the algorithm of storage of document im-
ages to the database. In this algorithm, the document ID is
the identification number of a document, and the point ID is
that of a point.

Next, the index �����	 of the hash table is calculated by

p p p

n nearest points of p

���

)0(mP)1(−

mn
Cm

P

p

)1(mP

Figure 4. All possible combinations of ��� �� points from ��� �� nearest points are examined.

23

p

The arrangement

of m points

���

)0(r)1(
4
−C

m

r
)1(r ���()

Figure 5. The arrangement of ��� �� points is described as a sequence of invariants calculated from
all possible combinations of 4 points.

1: for each � � �All feature points in a database image� do
2: �� � A set of the � nearest points of �.
3: for each �� � � All combinations of � points from ���

do
4: �� � ���� � � � � ��� � � � � ����� where �� is an ordered

point of �� based on the angle from � to �� with an ar-
bitrary selected starting point ��.

5: ������� � � � � ������ � � � � ������ � ��� � A lexico-
graphically ordered list of all possible ����� that is a sub-
sequence consisting 4 points from ��.

6: for � � � to ��� � � do
7: 	��� � a discretized affine invariant calculated from

�����.
8: end for
9:
���	
 � The hash index calculated by Eq. (2).

10: Store the item (document ID, point ID,
	���,� � �,	�������) using
���	
.

11: end for
12: end for

Figure 6. Storage algorithm.

I
n
d
e
x

ListHash Table

���)1(
4
−C

m

rDocument ID)0(rPoint ID ���)1(
4
−C

m

rDocument ID)0(rPoint ID

���)1(
4
−C

m

rDocument ID)0(rPoint ID ���)1(
4
−C

m

rDocument ID)0(rPoint ID

0

1

2

H
size

�

�

�

Figure 7. Configuration of the hash table.

the following hash function:

������ �

�
������
���

�	�
�
�

�
��� ����� (2)

where �	�
 is a discrete value of the invariant, � is the level
of quantization of the invariant, and � ���� is the size of the
hash table.

The item (document ID, point ID, �	�
� � � � � �	�����
) is

1: for each � � �All feature points in a query image� do
2: �� � A set of the � nearest points of �.
3: for each �� � � All combinations of � points from ���

do
4: for each �� � �� do
5: �� � ���� � � � � ��� � � � � ����� where �� is an ordered

point of �� based on the angle from � to �� with a
starting point ��.

6: ������� � � � � ������ � � � � ������ � ��� � A lexico-
graphically ordered list of all possible ����� that is a
subsequence consisting 4 points from ��.

7: for � � � to ��� � � do
8: 	��� � a discretized affine invariant calculated from

�����.
9: end for

10:
���	
 � The hash index calculated by Eq. (2).
11: Look up the hash table using
���	
 and obtain the

list.
12: for each item of the list do
13: if Conditions to prevent erroneous votes [2] are sat-

isfied then
14: Vote for the document ID in the voting table.
15: end if
16: end for
17: end for
18: end for
19: end for
20: Return the document image with the maximum votes.

Figure 8. Retrieval algorithm.

stored into the hash table as shown in Fig. 7 where chaining
is employed for collision resolution.

2.5. Retrieval

The retrieval algorithm is shown in Fig. 8. In LLAH, re-
trieval results are determined by voting on documents rep-
resented as cells in the voting table.

First, the hash index is calculated at the lines 7 to 10 in
the same way as in the storage step. At the line 11, the list

24

shown in Fig. 7 is obtained by looking up the hash table.
For each item of the list, a cell of the corresponding docu-
ment ID in the voting table is incremented if it has the same
feature �����,� � �,���������. Finally, the document which
obtains the maximum votes is returned as the retrieval re-
sult.

3. Reduction of the required amount of mem-
ory

In this section, we introduce a method of reduction of the
required amount of memory. In LLAH, many features are
calculated in order to realize the stability of features. All
features are stored in the hash table in the form of linked
lists regardless to their importance. We reduce memory con-
sumption by removing less important features and changing
data structure of the database.

Let us show an example. In the following condition,

� � � �, � � �, ����� � ����� �		

� The number of document images in the database is
10,000

� Average number of feature points in a document image
is 630

� Document ID, point ID and ���� are stored in 2 bytes,
2bytes and 1byte variables respectively

� A pointer variable requires 8 bytes

the hash table requires ����� �		� � � ��	
� and linked
lists require �	� 			���	������������ � ���
�.
Therefore the total required amount of memory is ���
�.

Features which cause collisions in the hash table are less
important because such features are shared by other points
and thus likely to lack discrimination power. They also in-
crease the processing time of retrieval since they frequently
come up and increase the number of votes. From an exper-
imental result, it is confirmed that the number of hash table
entries with collisions is 28% of the number of hash table
entries with at least one item. Since the number of entries
with collisions is minor, removing features with collisions
will not cause fatal effect on accuracy of retrieval. Thus we
have decided to remove linked lists with collisions.

Removal of features with collisions enables further re-
duction of memory consumption since it allows to simplify
the data structure of the hash table. Features (invariants
����) are stored in order to find the appropriate item from the
linked list in the case of collisions. Because we have elimi-
nated all collisions, we can also remove the records of fea-
tures. Moreover document IDs and point IDs are not needed
to be stored in the form of linked list because only one item
is stored at an index of the hash table. Therefore we adopt a

I
n
d
e
x

Hash Table

0

1

2

H
size

�

�

�

Document ID Point ID

Document ID Point ID

Document ID Point ID

Document ID Point ID

�

�

�

�

�

�

Figure 9. Configuration of the simplified hash
table.

simple hash table as shown in Fig. 9 as the structure of the
database. Changing the data structure into a simple hash ta-
ble enables further reduction of the memory consumption.
For example, the required amount of memory is 512MB un-
der the condition of the above example (� ���� � ������		,
a document ID and a point ID are stored in 2 bytes vari-
ables). Therefore 77% reduction of the required amount of
memory can be realized.

Another way to reduce the required amount of memory
is to reduce the size of the hash table �����. However, �����

significantly affects performance of retrieval. Especially for
the simplified hash table, the size of the hash table is fatal.
If the hash table has an insufficient number of index space
to store items, many entries will be invalidated due to colli-
sions.

4. Speeding up retrieval

We also introduce an improvement of the storage and the
retrieval algorithm to speed up the retrieval process.

In the retrieval algorithm shown in Fig. 8, all points of
�� is used as a starting point �� to examine all cyclic per-
mutations of 	� at the lines 4 and 5. This is because 	�

of the retrieval algorithm does not necessarily match 	� of
the storage algorithm due to rotations of camera-captured
images.

However, the examination of all cyclic permutations can
be omitted if the same �� is always selected both at the stor-
age and the retrieval processes. We have introduced a se-
lection rule of the starting point to the storage and retrieval
algorithm.

The selection rule is shown in Fig. 10. For each point

of � points, an affine invariant ���� is calculated by com-
bining it with the following three points. If ���� has the
maximum value in ����� � � � �������, the point � is selected
as the starting point. In the example of Fig. 10, point
1 is the starting point. If there are two or more equiva-
lent maximum values, the succeeding value ����
������

is used to select one of them. For example, if ���� � ����

25

p
���

)0(s)1(−m
s

)1(s ���()

Maximum

The arrangement

of m points

Starting point

Figure 10. The point which gives maximum ���� is selected as the starting point.

Figure 11. Examples of images in the
database.

and both are the maximum, then the value of � �����������

and ������������ are compared. If ������������ is larger,
the point � is selected as the starting point. In the case
that ������������ � ������������ the succeeding values
������������ and ������������ are likewise examined.

5. Experimental results

In order to examine effectiveness of improvements in-
troduced in this paper, we investigated performances of the
original and improved versions of LLAH. To clarify the ef-
fect of memory reduction stated in Sect. 3. and that of
speeding up stated in Sect. 4., we measured the required
amount of memory, processing time and accuracy of three
versions of LLAH: the first one is the original LLAH, the
second one is the memory reduced, and the third one is the
memory reduced and speeded up version. The third version
is the proposed method in this paper.

Document images stored in the database were images
converted with 200 dpi from PDF files of single- and
double-column English papers collected mainly from CD-

Figure 12. Examples of query images.

ROM proceedings. Examples of images in the database are
shown in Fig. 11. Query images were captured using a digi-
tal camera with 6.3 million pixels. As shown in Fig. 12, they
were captured from a skew angle (about 45 degree). Since
the angle with which query images are captured (45 degree)
is different from that of the images in the database (90 de-
gree), experiments performed with these query images and
the database would demonstrate robustness of the proposed
method to perspective distortion. Note that the query im-
ages suffer from severer distortion than those of [2]. Experi-
ments were performed on a workstation with AMD Opteron
2.8GHz CPUs and 16GB memory. Parameters1 were set to
� � �, � � �, � � ��. �	
�� was set to ����� ��

.

5.1. Required amount of memory

Figure 13 shows the amount of required memory of the
three version of LLAH with 100, 1,000 and 10,000 pages
databases. The original version of LLAH required 5 times
larger amount of memory than improved ones. Moreover,

1Some experimental results with different � and � are found in [2].

26

�

���

����

����

����

����

����

��� ���� �����

���	
����	��	������	�����

�
�
�
��
�
�
�
��
�
	
�

�
�
�

�
��
�

�
�
�
�
�
�
��
�
�

�����
��	���� ������	������� �������

Figure 13. The relationship between the num-
ber of stored pages and the required amount
of memory.

��

��

��

��

��

��

��� ���� �����

	
�����������������������

�
�
�
�
�
�
�
��
	

�
��
�
�
�
�

������������ ����!�����"�� #�������

Figure 14. The relationship between the num-
ber of stored pages and processing time of
retrieval.

the amount increased with increasing the number of stored
pages. Since the original LLAH adopts the linked list
as the form of the database, more stored pages result in
more amount of memory. On the other hand, in the mem-
ory reduced versions, the required amount of memory was
constant regardless of the number of stored pages. Since
these versions adopt a simple hash table as the form of the
database, required memory is that for a hash table of a fixed
size.

5.2. Processing time of retrieval

Figure 14 shows processing time by each version of
LLAH. The proposed version of LLAH realizes reduction
of the processing time by about 60%. This is because the

��

��

��

��

��

���

��� ���� �����

�	
����
���������
�����
�

�
�
�
�
�
�
�
�
�
�
	

������������� �
��� ��
�!
� "�����
�

Figure 15. The relationship between the num-
ber of stored pages and accuracy.

number of computed invariants and access to the database
have been reduced by skipping the calculation of all possi-
ble cyclic permutations.

It is also confirmed that processing time of the mem-
ory reduced version was almost constant regardless of the
number of stored pages as contrasted to the original ver-
sion. This is because access to a simple hash table requires
constant computations while access to linked lists requires
computations in proportion to the number of stored items.

5.3. Accuracy

Figure 15 shows accuracy of retrieval of each version
of LLAH. Improved versions demonstrated higher perfor-
mance in terms of accuracy in addition to time and memory
efficiency. In contrast to the original LLAH which showed
less accuracy with a larger number of stored pages, im-
proved versions showed higher accuracy although they also
had a decrease in accuracy with 10,000 stored pages.

Although the improvements proposed in this paper were
not intended to improve accuracy, they realized higher ac-
curacy. We consider the reason is that erroneous votes are
decreased as a result of removal of less important features.
In the improved versions, features which cause collisions
are removed from the database. Since such features tend
to cause erroneous votes, removal of them results in higher
accuracy.

6. Related work

In LLAH, document images are retrieved based on local
arrangements of feature points. Therefore it can be clas-
sified into an image retrieval method using local features.
There have been various types of image retrieval methods

27

using local features. They can be classified into two types:
one based on complex features such as SIFT and the other
based on simple features such as feature points.

Video Google [6] is one of the image retrieval methods
using complex local features. In Video Google, a codebook
is created by clustering SIFT features extracted from im-
ages prior to retrieval. Retrieval is performed based on vec-
tor quantized SIFT features of query images using the code-
book. In order to realize accurate retrieval, a large codebook
is needed. However use of a large codebook results in long
processing time since nearest neighbor search takes much
time. It is also a problem that calculation of SIFT features
needs much computation.

Geometric Hashing(GH) [7] is well known as an image
retrieval method based only on feature points. In GH, fea-
tures are calculated by combining feature points in order
to realize stability of features. For example, O(� �) com-
putation is required for the retrieval under affine distortion
where � is the number of feature points. Therefore the
number of combinations becomes enormous when images
have many feature points. Since document images have
many feature points, it is prohibitive to apply GH to retrieval
of document images. For more details, see [8].

7. Conclusion

In this paper, we have introduced improvements to the
LLAH. The required amount of memory was decreased by
removal of unnecessary features and simplification of struc-
ture of the hash table. Processing time of retrieval was
shortened by the improvement of the retrieval algorithm.
From the experimental results, we have confirmed reduction
of the required amount of memory by 80% and shortening
of the processing time of retrieval by 60%. It is also con-
firmed that the improvements bring higher accuracy. From
these results, we can conclude the proposed improvements
realize better scalability and extensibility to applications
which require hi-speed retrieval.

Our future tasks include improvements of feature point
extraction process. The feature point extraction process
can become a bottleneck of the whole image retrieval pro-
cess using LLAH since it requires heavy image processing.
Since LLAH currently covers only English document im-
ages, it is also necessary to add other objects in the target of
LLAH.

Acknowledgement

This research is supported in part by Grant-in-Aid for
Scientific Research from Japan Society for the Promotion
of Science (19300062, 19�7621).

References

[1] D. Doermann, “The indexing and retrieval of document
images: a survey”, Computer Vision and Image Under-
standing, vol. 70, no. 3, pp.287–298, 1998.

[2] T. Nakai, K. Kise, and M. Iwamura, “Use of
affine invariants in locally likely arrangement hashing
for camera-based document image retrieval”, Lecture
Notes in Computer Science (7th International Work-
shop DAS2006), vol. 3872, pp.541–552, 2006.

[3] J. Liang, D. Doermann, and H. Li, “Camera-based anal-
ysis of text and documents: a survey”, IJDAR, vol. 7,
pp.84–104, 2005.

[4] P. Clark, and M. Mirmehdi, “Recognising text in real
scenes”, IJDAR, vol. 4, pp. 243–257, 2002.

[5] C. H. Lampert, T. Braun, A. Ulges, D. Keysers, and
T. M. Breuel, “Oblivious document capture and real-
time retrieval”, Proc. CBDAR2005, pp.79–86, 2005.

[6] J. Sivic and A. Zisserman, “Video google: a text re-
trieval approach to object matching in videos”, Proc.
ICCV2003, vol. 2, pp.1470–1477, 2003.

[7] H. J. Wolfson and I. Rigoutsos, “Geometric hashing: an
overview”, IEEE Computational Science & Engineer-
ing, vol. 4, no. 4, pp.10–21, 1997.

[8] M. Iwamura, T. Nakai and K. Kise, “Improvement of
retrieval speed and required amount of memory for ge-
ometric hashing by combining local invariants”, Proc.
BMVC2007, 2007 [to appear].

28

