Robust and Efficient Recognition of Low-Quality Images
by Cascaded Recognizers with Massive Local Features

Koichi Kise Kazuto Noguchi

Masakazu Iwamura

Dept. of Computer Science and Intelligent Systems, Osaka Prefecture University
1-1 Gakuencho, Naka, Sakai, Osaka 599-8531, Japan

{kise, masa}@cs.osakafu-u.ac.jp

Abstract

For image recognition with camera phones, defocus and
motion blur cause a serious drop of the image recognition
rate. In this paper, we employ generative learning, i.e., gen-
erating blurred images and learning based on massive local
features extracted from them, for a recognition method us-
ing approximate nearest neighbor search of local features.
Major problems of generative learning are long processing
time and a large amount of memory required for nearest
neighbor search. The problems become serious when we
use a large-scale database. In the proposed method, they
are solved by cascaded recognizers and scalar quantization.
From experimental results with up to one million images,
we have confirmed that the proposed method improves the
recognition rate, and cuts the processing time as compared
to a method without generative learning.

1. Introduction

As mobile devices with cameras such as camera phones
have become more common, it is natural to make use of
them as input devices to access information on the Inter-
net. Such applications can be thought of as a replacement of
bar-codes, and include information retrieval by recognizing
pictures of items in catalogs, book covers and CD jackets,
etc. As compared to well-studied generic object recognition
which is to find classes of objects, the above recognition is
called specific (or particular) object recognition to distin-
guish instances of objects.

In order to make the above recognition services prac-
tical, recognition methods should satisfy the following re-
quirements: (1) large-scale, (2) memory-efficient, (3) fast,
(4) robust, and (5) near error-free. Large-scale recognition
is necessary for services on a large number of objects, say
1 million. Large-scale recognition requires methods to be
memory-efficient, because the amount of required memory
on servers directly affects the cost of services. Fast recog-

nition is also required for the same reason. Robust recogni-
tion is needed for low-quality images (query images), i.e.,
images captured with various imaging conditions including
different lighting, occlusion, low-resolution, defocus and
motion blur. The latter two factors are crucial for recogni-
tion with mobile devices. The final requirement, near error-
free recognition is based on the observation that, from the
users’ point of view, it is far better to reject a query image
than to receive an erroneous result.

So far, researchers have attempted to build specific ob-
ject recognition. Pioneering work by Schmid and Mohr [8]
as well as Lowe [5] have been extended to give methods
to better fulfill some of the above requirements [9, 6, 7].
However, further investigation is required to meet the re-
quirements at a practical level.

In this paper, we propose a method of recognition by
matching local features aiming at satisfying the require-
ments as follows. For recognition of low-quality query im-
ages with a database of 1 million images, 90% of query
images can be recognized correctly with the 32GB memory
in 50ms/query. Rejection of 10% of query images allows us
to recognize images with the error rate less than 1 %.

The most important contribution of this work is to dis-
cover the fact that the key to make robust recognition of
low-quality images more efficient is to increase massively
the number of local features for indexing images in the
database. Such a paradoxical “fact” is realized by a new
paradigm of cascaded recognizers with the two important
properties monotonicity and difference accessibility.

2. Related work

In this paper, we focus on specific object recognition
based on local features such as SIFT. Even for this lim-
ited field of recognition, many methods have so far been
proposed. They can be characterized by the following four
factors: representation, robustness, efficiency, and memory.

The representation is how to represent images based on
local features. Basic methods are twofold: representation

2125

2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops

978-1-4244-4441-0/09/$25.00 ©2009 IEEE

using visual words and representation using a set of raw
local features. Although visual word representation is dom-
inant for generic object recognition, it causes a problem for
specific object recognition. A considerably large number of
local features need to be retained as visual words. In [6],
it is said that, for better recognition, a visual word should
represent only a few local features, which causes problems
both on processing time and memory. We have also tested
using our image samples and obtained similar results. The
representation using a set of raw local feature vectors is to
keep original vectors as representation. It was introduced at
the beginning of specific object recognition as in [5] and
still has its advantage thanks to its simplicity. The visual
word representation is to describe an image with the vector
space defined by visual words. Since the resultant vector is
global, i.e., a single vector for a whole image, it cannot deal
with occlusion and some other local changes in the image.
The representation as a set of local features can solve such
problems since local changes are limited to destroy some lo-
cal features; the rest are still good for recognizing objects.

With the representation of a set of raw local features,
matching feature vectors is a fundamental processing for
recognizing objects. The simplest way is to find an object
whose local features match best to those of a query image.
The simplest process of matching is to find the most similar
feature vector by nearest neighbor search.

Since the number of feature vectors are so large, it is re-
quired to apply speed-up technologies for matching. Lowe
has proposed a method called Best-Bin-First algorithm [5]
based on the k-d tree. This is to approximate the nearest
neighbor search to obtain significant speed-up. Ke and Suk-
thankar employ a hash-based approach [3] for the approxi-
mation using LSH (Locality-Sensitive Hashing) [1].

In order to achieve a high recognition rate, methods for
generic object recognition employ sophisticated classifiers
and distance measures such as SVM (support vector ma-
chine) and EMD (earth mover’s distance). However these
technologies are difficult to apply to specific object recog-
nition due either to its high dimensional representation or
a large number of feature vectors. Another possible way is
to generate degraded images and extract local features from
them to supplement the originals. For example, the method
with random ferns [7] is a successful case of this approach,
which is sometimes called generative learning 2].

It can be explained using analogy of shooting. The ap-
proach to generic object recognition is to improve the pre-
ciseness of shooting. On the other hand, the approach to
specific object recognition is for hitting a target even by a
bad shot: to increase the number of either bullets or targets
by generative learning.

Memory is another source of problems when a large
scale recognition is needed. The key is how to com-
press local features that are typically represented as high-

Figure 1. Examples of query images taken by camera phones.

dimensional real-valued vectors. One way is to reduce the
dimensionality. PCA-SIFT [3] is a variant of SIFT for this
purpose. Another way is to quantize feature vectors. Vec-
tor quantization, which generally allows us a better com-
pression rate, is employed for obtaining visual words (each
visual word corresponds to a codeword by vector quantiza-
tion). Scalar quantization is also used and found that, as
compared to harmful vector quantization, scalar quantiza-
tion affects almost nothing down to 2 bit/dim. representa-
tion [4].

3. Generative learning for low-quality images
3.1. Task

Figure 1 shows typical examples of images obtained with
several camera phones by taking small printouts of original
pictures. Various imaging problems including low resolu-
tion (QVGA), defocus, motion blur, uneven lighting, and
perspective distortion make their recognition hard. In addi-
tion, some images are off the frame and sometimes include
a different picture due to the time lag of the shutter.

The task of recognition in this paper is to recognize cor-
rectly such low-quality images in an efficient and robust
way. It may not be difficult if the number of images to be
distinguished is not large. However, if it is, say 10 thou-
sand or more, the task becomes difficult, because defocus
and motion blur make many images look alike.

3.2. Generative learning

In order to solve the task, we introduce generative learn-
ing, with a special attention to defocus and motion blur. Fig-
ure 2 shows the proposed way of generative learning. An

2126

~

vertical blurring
»

19

horizontal blurring

Figure 2. Generated blurred images.

original image A is blurred by changing the standard devia-
tions of Gaussian. In Fig. 2, the parameter w of vertical and
horizontal blurring such as 7, 13 corresponds to the standard
deviation o as 0 = 0.3(w/2 — 1) + 0.8. By changing the
parameter of horizontal and vertical blurring independently,
motion blur can be simulated.

Figure 3 illustrates effects of generative learning. In
each small figure (a)—(e), the left images correspond to a
query image and the right images indicate its equivalent in
the database. As the number of blurred images increases,
more local features are obtained. This gains the number
of matches, where matching is done by nearest neighbor
search. Note also that even with the diagonal set Dgjag 0Of
Fig. 2, which simulates only defocus, the number of correct
matches increases.

As shown in this figure, the advantage of generative
learning is obvious: it allows us to increase the number of
correct matches, which result in improving the recognition
rate. Its disadvantage is also clear: additional local features
cause problems on both memory and processing time.

4. Cascaded recognizers
4.1. Strategy for solving the problems

In order to employ generative learning, we need to solve
the problems on memory and processing time without los-
ing the recognition rate. In general, these factors are three-
cornered: improvement on one factor may deteriorate oth-
ers. In other words, it is required to have a methodology to
balance the factors depending on a task.

As stated above, generative learning gives us a mean to
improve the robustness, i.e., to improve the recognition rate
for low-quality images. The parameter here is the number
of generated images.

(a) Image set A (9/199)

(b) Image set B (21 /575)

(c) Image set C (36 /839) (d) Image set D (36 / 1059)

(e) Image set Dyiag (16 /342)

Figure 3. A query image captured by a camera phone which in-
cludes 134 local features is shown on the left of each small fig-
ure. Image sets A-D correspond to blurring A—D shown in Fig. 2.
Daiag indicates the blurred images consisting of diagonal elements
in Fig. 2. Local features extracted from blurred images are shown
on the right of each small figure. Two numbers in the parentheses
indicate the number of matches and the number of local features
from blurred images, respectively.

For solving the problem on memory, we employ a
method of scalar quantization proposed in [4]. We should
be careful that the scalar quantization lowers the discrimina-
tion power of original feature vectors, which may result in
spoiling nearest neighbor search. We experimentally eval-
uate whether or not scalar quantization spoils the accuracy
gained by generative learning.

Another problem is how to achieve the improvement on
processing time. A powerful tool for the improvement is ap-
proximate nearest neighbor search. A parameter of approx-
imation allows us to control the quality of resultant nearest
neighbors, where the quality is defined based either on how
far the resultant vector is as compared to the correct nearest
neighbor, or how probable the correct nearest neighbor is
obtained. In either cases, low-quality search with stronger
approximation enables us a drastic speed-up (several orders
of magnitude). The question is how to determine the value

2127

Answer
or
Reject

[Answer]

Figure 4. Cascaded recognizers.

of approximation parameters.

The problematic part of parameter definition is that an
appropriate parameter value depends heavily on images to
be recognized. Generally speaking, texture rich images are
easy to recognize, while vague images are hard. If we would
like to keep the recognition rate at a certain level, we need
to recognize some “hard” images by setting the parameter
for them. This indicates that unnecessarily long processing
time is spent for many “easy” images.

In order to solve this problem, we propose a method to
control adaptively an approximation parameter depending
on images. The key technology is a cascade of recognizers.
The advantage of our method is the guarantee of nothing
getting lost by the cascade; The worst case computational
cost of the cascade is equivalent to the cost without it.

4.2. Architecture and requirements of the cascade

The architecture of the cascade is shown in Fig. 4.
Squares numbered by steps 1,...,N represent basic recog-
nizers with approximate nearest neighbor search.

A basic recognizer takes as input a set of local feature
vectors, casts votes based on matching them to obtain the
result of recognition. To be precise, for each feature vector
extracted from a query image (query local feature), the basic
recognizer finds its corresponding local feature vector from
the database (DB local feature) by applying approximate
neighbor search. Since each DB local feature has a label of
image, a matched query feature obtains the label for casting
a vote. The recognition result is defined as the image with
the maximum votes.

In the cascade, all basic recognizers are different as fol-
lows. The earlier the step s (1 < s < N) is, the stronger
the approximation is applied. The recognition process is as
follows. Firstly, the basic recognizer of the first step, i.e.,
the recognizer with the largest level of approximation, at-
tempts to recognize a query image. If enough evidence is
obtained at this step, the recognition process is immediately
terminated and the result is outputted. Otherwise, a set of
query feature vectors are sent to the next step to process
the query image by a basic recognizer with less approxima-
tion. If enough evidence cannot be obtained by the last step
N, the cascade outputs either the image with the maximum

votes, or reject the query image.

Since “easy” images are recognized at early steps, the
average speed can be improved. For the “hard” images
the cascade can take its time to make a decision. Thus it
is far different from the well-known cascade by Viola and
Jones [10], which is for rejection; trying to reject meaning-
less regions as early as possible. On the other hand, the cas-
cade proposed here is for recognition; trying to find easily
recognizable images as early as possible.

Requirements for realizing the proposed cascade are: (1)
how to make a decision of terminating the recognition pro-
cess, (2) how to keep the efficiency even for “hard” images.
For the first requirement, the computational cost for the de-
cision should be negligibly small. For the second require-
ment, it is necessary to guarantee the computational cost of
the worst case. Ideally, the computational cost of applying
a series of recognizers 1,...,IV is equal to the cost of apply-
ing the single recognizer which has the same approximation
level at the step N.

4.3. Termination of recognition

It can generally be said that “hard” images have the fol-
lowing properties: (1) they often have less votes even if they
are correctly recognized, (2) they have votes whose number
is close to the image ranked at the second maximum votes.
These tendencies can be used to define termination condi-
tions. Let vq(s) and vo(s) be the numbers of votes for the
first and second best images at the step s. Application of
the cascaded recognizers is terminated at the step s if the
following two conditions are satisfied:

vi(s) > (D
rui(s) > we, (2)

where ¢t and r are parameters.

4.4. Efficient recognition for ‘“hard” images

The performance of a basic recognizer is determined
by its approximate nearest neighbor searcher. Consider N
approximate nearest neighbor searchers (ANNSs) 1, ..., NV
whose level of approximation is different in such a way
that for all s an ANNS (s — 1) (1 < s < N) is with a
stronger level of approximation than an ANNS s. Let PZ.(S)
be a set of feature vectors obtained by an ANNS s for cal-
culating distance to a query feature vector g,;. In general,
an ANNS with a stronger level of approximation obtains a
smaller number of feature vectors for distance calculation,
ie.ViVs P> |PC7Y).

We define the following two property of an ANNS.

Definition 1 (monotonicity) An ANNS is monotonic if the
following equation holds:

Vivs P*) o pl7Y. 3)

2128

Definition 2 (difference accessibility) An ANNS has dif-
ference accessibility if it can efficiently access to elements
in

P — Py,)

If ANNSSs in the cascade are monotonic, distance calcu-
lation at the step s is not necessarily for Pi(s) but for the

difference Pi(s) — Pi(sfl). This strategy enables us to equal-
ize feature vectors for distance calculation with the cascade
(in the steps from 1 to s) to those without the cascade (with
only the ANNS s):

PO = | (P® -) 5)

k=1

where PZ.(O) = ¢. In addition, if ANNS holds the property of
difference accessibility, the computational cost for access-
ing the set difference Pi(s) fPi(Sfl) is negligible. Thus even
for the worst case, i.e., the case in which the last ANNS N is
applied, the computational cost is equivalent to a recognizer
without the cascade.

The processing of recognition is as follows. Suppose we
have already applied basic recognizers up to the step (s—1).
So far, we have already had, for each query feature vector
q;. the temporary nearest neighbor p* € Pi(sfl). Thus at
the step s, all we have to do is to calculate the distance to
elements in Pi(s) — Pi(sfl), and compare it with the distance
to p* for updating the temporary nearest neighbor.

5. Details of Recognition

The proposed method has been built on the above notions
of generative learning and the cascade. Basic recognizers in
the cascade are the same as the one proposed in [4]. The
details including those of basic recognizers are as follows.

5.1. Storage

PCA-SIFT is employed as local features. Original real-
valued vectors are transformed into their scalar quantized
form with 2bit/dim. Let p = (p1,...,pn) be the scalar
quantized version of PCA-SIFT feature vector where p; €
{0,1,2,3}. The probability of having each quantized value
is kept equal by defining thresholds for quantization using a
learning set. Since the average #; of the original values of
each dimension j is almost 0, the quantized value 0 and 1
are for negative values and 2 and 3 for positive values.

Hashing quantized vectors is based on their bit-vector
representation u = (uy, ..., ug) where

ifp; —6; >0,

1
L — 6
i {0 otherwise, ©

and d < n. The hash value of a feature vector p is then
calculated as

d
Hindex = Zuj2(j71) mod Hsize (7)
j=1

where H;,. is the size of the hash table. Each feature vec-
tor is recorded in the hash table with its label (ID) of the
image from which it is extracted. Collisions in the hash ta-
ble are kept by the chaining method. If the length of the
chain exceeds a predetermined threshold ¢, it is discarded
and feature vectors can no longer be added to this bin. This
processing is quite effective to cut the amount of memory
and processing time.

5.2. Retrieval and Recognition

Retrieval of the nearest neighbor feature vector is also
quite simple. For each query feature vector, the same pro-
cessing of scalar quantization and calculation of a hash
value is applied to look up the hash table. As a result a
set X of candidate feature vectors with the same hash value
are obtained.

At each basic recognizer in the cascade, the feature vec-
tor with the minimum distance

*: 1 —_ . 8
x _gggllw q;ll (®)

is found for each query feature vector g; for voting.

An obvious problem of such a simple method is that due
to variation of imaging conditions, the query feature vector
corresponds to a hash bin which is different from the bin of
its nearest neighbor. A method for compensating it would
be to perturb the bit vector. Let g; = (¢1, ..., ga) be a query
feature vector and 6; be the threshold for binarization of the
j-th dimension. For the dimension j such that

g —0il <e, 9

the nearest neighbor of g; would have hashed into a differ-
ent bin because ¢; is close to §;, where e is a threshold.
In such a case, not only the original bit vector but also the
flipped bit vector with u; = 1 — u; is employed for ac-
cessing to the hash table to determine X as the union of
retrieved feature vectors.

The maximum number of dimensions for the bit flip is
predefined to b. The number of bit vectors produced by
flipping b bits can be as large as 2°. For example, if b = d,
i.e., the number of dimensions of the bit vector, all feature
vectors are in the set X. Thus the value of b should be
limited to much less than d. If g; of a query feature vector
which satisfies Eq.(9) exceeds the limit b, dimensions with
smaller indexes j are employed for flipping.

The parameter b is to control the search space and thus
can be used to define the cascade as follows. At the first step

2129

Table 1. Training sets.

Training set | # of images | Ave. # of feature vectors
(ratio to A) | (per image) [ratio to A]

A 1 5.0 x 10% [1.0]

B 4 1.6 x 10% [3.2]

C 9 2.6 x 103 [5.2]

D 16 3.3 x 10% [6.6]
Diiag 4 9.8 x 107 [2.0]

of the cascade, no bit flip is applied. At the next step, one bit
flip is applied and at the step N, b bit flips are applied (thus,
N = b+ 1). Note that two properties, the monotonicity and
the difference accessibility are both satisfied.

6. Experiments
6.1. Experimental settings

The proposed method was evaluated with the following
experimental settings.

As images in the database we employed | million im-
ages obtained from Flickr using keywords such as “ani-
mal”, “birthday”, “food”, as well as an upload date such
as “2007.01.01”. These images were shrunk to have their
longest side less than or equal to 320 pixels, and stored
in the database. Examples are shown in Fig. 5. Genera-
tive learning was applied to produce blurred images such
as shown in Fig. 2. Table 1 shows the number of training
images employed for extracting feature vectors including
originals (the set A), as well as the average number of ex-
tracted feature vectors. Since less number of feature vectors
are extracted from more blurred images, the increase of the
number is less proportional to the number of added images.

Query images were prepared for recognition as well as
rejection. Randomly selected 1,000 images were printed
out in color on A4 paper with the size of either 16 im-
ages/page (1/16), or 4 images/page (1/4). Each image in
these printouts was captured by 10 persons with different
camera phones with or without the macro mode. Note that
without the macro mode, there is little chance to obtain fo-
cused images for small printouts (1/16). As query images,
in total 8,000 images (by 8 persons) for recognition and
2,000 images (by 2 persons) for rejection were prepared.
The size of query images was fixed to QVGA (320 x 240).

The size of the hash table was set to Hs,e = 2%. Unless
otherwise noted, the following parameters were fixed to b =
10, ¢ = 100, d = 28, ¢ = 400, t = 4 and r = 0.4.
In the following, processing time means time needed for
recognizing one query image, excluding the time for local
feature extraction. The computer employed for experiments
was with AMD Opteron CPUs 2.8GHz (single CPU was
employed for experiments) and 64GB memory.

Figure 5. Example images in the database.

6.2. Effects of generative learning

First of all, we evaluated the effect of generative learning
for recognition without scalar quantization (16 bit/dim.), the
cascade or rejection. The recognizer without the cascade is
the application of a single basic recognizer with the param-
eter b. The representation without the scalar quantization is
to describe original feature vector with 16 bit/dim '. The
size of the database employed as original (A) in Fig. 2 was
10,000 images.

Table 2 shows the results. As the number of train-
ing images grew, the recognition rate improved from 81%
(with the training set A) to 93.3% (with the training set D,
+12.3%). The more the number of feature vectors is, the
higher the recognition rate is. The biggest improvement was
achieved for query images taken without the macro mode.
For such low-quality queries, generative learning is quite
effective to improve the recognition rate. With the training
set Dgjag, we still obtained progress, though the recognition
rate was less than that with the training set D.

As for the processing time, recognition with the training
set C doubled it from that with the training set A. The total
memory needed for the recognition was 2.5GB (A), 3.5GB
(B), 4.3GB (C), and 4.5GB (D). Thus the improvement on
recognition rate was built on the sacrifice of both processing
time and memory.

Figure 1 illustrates query images which failed to recog-
nize with the training set A but succeeded with the train-
ing set C. From this figure, it is observed that the proposed
method is effective to such severely blurred images.

6.3. Effects of the cascade

Next we introduced the cascade with the same param-
eter values of recognizers and the database. The rejection
and scalar quantization were not introduced to this experi-
ment. The results are also shown in Table 2. As compared
to the results without the cascade, processing time was sig-
nificantly improved with little loss of recognition rates. The
most remarkable point is that the processing time remains

! Although the original feature vector is represented as 32 bit/dim., val-
ues are almost within the range of 16bit/dim. Thus for the fairness, original
feature vectors are represented by 16bit/dim.

2130

Table 2. Recognition rate[%] and processing time [ms] for each training set for the DB of 10,000 images and query sets.

cas- DB A(original) B C D Diag
cade | Query | recog. rate | time | recog. rate | time | recog. rate | time | recog. rate | time | recog. rate | time
w/0 ave. 81.0 | 7.7 89.9 | 12.0 92.6 | 14.8 933 | 164 91.0 | 95
w ave. 81.0 | 23 89.9 1.7 92.5 L5 93.2 L5 90.9 1.6
g 8000 o11b 93.0 ;
© 7000 o11a i |
§ 6000 |10
- m9 —_]
5 5000 ' o < 92.0
g 4000 a7 Py]
3 %000 o S 910]
3 2000 o 5 |
5 1000 o3 =
2 0 m2 ® 900} Cascade 1
A B c D D_diag |31 3 With [Without
Training set 4 | o 2bit R -
89.0 | |Quantization 1661t | — — .
Figure 6. The number of images outputted at each stage. : : . .
1e+03 5e+03 1e+04 5e+04 1e+05 1e+06

unchanged or even slightly decreases despite a significant
increase of the number of local feature vectors in the train-
ing sets. As already shown in Table 1, the training set D
includes vectors six times more than the original set A.

Figure 6 unveils what happened in the cascade. Each bar
in the figure corresponds to a training set, and represents at
which stage of the cascade the recognition terminated. As
shown in Fig. 4, The number 1 indicates the first step. The
numbers 11a and 11b represent the output of the last step:
at the last step, the output which satisfies the termination
conditions (the down-pointing arrow in Fig. 4) corresponds
to 11a, and the rest (the right-pointing arrow) corresponds
to 11b. From this graph, it is clear that the increase of fea-
ture vectors allows us to terminate the recognition at earlier
steps. Since “easy” images are recognized at earlier steps,
additional feature vectors obtained by the generative learn-
ing make the recognition of some images easier.

Although it may sound like a paradox, it has been shown
that more feature vectors enable us to shorten the process-
ing time. This phenomenon can be explained as follows.
Additional feature vectors raise the chance that a query fea-
ture vector has its nearest neighbor in the same or close bins
of the hash table. This helps us to accumulate correct votes
at early steps of the cascade, and thus results in terminating
earlier.

6.4. Rejection

The next experiment is on the effectiveness of rejection.
As described in Sect. 1, it is better for users to receive the
result of “rejection” than to have an erroneous result. Thus
we tested whether the proposed method can be used as near
error-free recognition at a certain level of rejection. The DB

The number of images

Figure 7. Recognition rate and the size of DB.

of size 10,000 images and the training set C were employed
with scalar quantization of 2 bit/dim. Evaluation criteria
are as follows. Let C, Eq,and Ry (C1 + E1 + Ry = 1)
be the recognition rate, the error rate, and the rejection
rate on queries for recognition, respectively, and F5 and
Ry (FEy + Ry = 1) be the error rate and the rejection
rate on queries for rejection, respectively. Parameter val-
ues were tested for the following ranges: b = 5,10, 15,
c = 2,5,10,100, d = 20,24,28, e = 200,400,600,
r=0.2,0.4,0.6, t = 4,8,12. The best combination of pa-
rameter values which maximized each evaluation criterion
shown in Table 3 was selected and applied based on 10-fold
cross validation. Results are also shown in Table 3. Longer
processing time was needed for queries for rejection, since
they were rejected at the last step of cascade. For example,
as shown in (2) of Table 3, the proposed method was suc-
cessful to achieve the error rates F/; and F» less than 1% by
allowing the rejection rate R; = 10% and 10 ms processing
time.

6.5. Scalability

Finally, the scalability of the proposed method was tested
using the DB up to | million images. The proposed method
was employed with and without the cascade, as well as with
and without scalar quantization of 2 bit/dim. The training
set used in this experiment is C.

For the recognition of 100K images, the total amount
of memory consumed by the method with and without the

2131

Table 3. Results with rejection.

criteria Queries for recognition Queries for rejection
(for learning sets) Ch[%] | E1[%] | R1[%] | time [ms] || E2[%] | R2[%] | time [ms]
(1) min(E; + Es + Ry), time < Ims 84.6 1.0 14.4 0.5 39 96.1 0.8
(2) min(E; + B2 + Ry), time < 10ms 88.1 0.4 11.5 1.3 0.9 99.1 55
(3) min(E; + Es + Ry), time < 100ms 90.1 0.3 9.6 13.8 1.7 98.3 68.8

100 | —
©
E 0l
'_

1L = Cascade ||
""""" With | Without
e 2bit RS — -
Quantization 16bit | — -
0.1

1e+03 5e+03 1e+04 5e+04 1e+05
The number of images

Figure 8. Processing time and the size of DB.

scalar quantization was 6.7GB and 22.6GB, respectively.
Although the database of size 1 million images cannot be
handled by the method without scalar quantization due to
the limit of available memory (64GB), the method with
scalar quantization worked with 31.6GB memory.

Figure 7 shows the relationship of the size of DB to the
recognition rate. As shown in this figure, scalar quantiza-
tion of 2 bit/dim. deteriorated the recognition rate about
1%. On the other hand, it is turned out that the cascade has
no harmful effect.

Figure 8 shows the relationship between the recognition
rate and the processing time. It is clearly shown that the
cascade enables us to speed up the processing 10 times. The
scalar quantization slightly increased the processing time
for the processing of quantization.

From the viewpoint of scalability, both the cascade and
the scalar quantization deserve to be used because: (1) the
cascade allows us significant speed up (10 times), (2) the
scalar quantization enables us to reduce the amount of mem-
ory to less than 30% of the original with a little loss of the
recognition rate (1%).

7. Conclusion

We have proposed a method of specific object recogni-
tion for low-quality images. Generative learning by vari-
ous Gaussian blurring is helpful for improving the recog-

nition rate. The burden caused by generative learning is
overcome by two methods, scalar quantization and the cas-
cade of recognizers based on approximate nearest neighbor
search. From the results of various experiments, the pro-
posed method has proven to be effective, robust and effi-
cient. The most important fact found through the experi-
ments is that in order to cut the processing time it is effec-
tive to increase the number of feature vectors for indexing
images.

Future work includes further expansion of scale as well
as application of the proposed method to 3D object recog-
nition.

References

[1] A.Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Comm. of
the ACM, 51(1):117-122, 2008.

[2] H. Ishida, T. Takahashi, I. Ide, Y. Mekada, and H. Murase.
Identification of degraded traffic sign symbols by a genera-
tive learning method. In Proc. ICPR2006, pages 531-534,
2006.

[3] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive rep-
resentation for local image descriptors. In CVPR2004, vol-
ume 2, pages 506-513, 2004.

[4] K. Kise, K. Noguchi, and M. Iwamura. Memory efficient
recognition of specific objects with local features. In Proc.
of the 19th International Conference of Pattern Recognition
(ICPR2008), 2008.

[5] D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91-110, 2004.

[6] D. Nistér and H. Stewénius. Scalable recognition with a vo-
cabulary tree. In Proc. CVPR2006, pages 775-781, 2006.

[7]1 M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast key-
point recognition using random ferns. IEEE PAMI. Accepted
for publication.

[8] C. Schmid and R. Mohr. Local grayvalue invariants for im-
age retrieval. /[EEE PAMI, 19(5):530-535, 1997.

[9] J. Sivic and A. Zisserman. Video Google: a text retrieval ap-
proach to object matching in videos. In Proc. of ICCV2003,
pages 1470-1477, 2003.

[10] P. Viola and M. Jones. Robust real-time object detection.
In Second Int’l Workshop on Statistical and Computational
Theroies of Vision — Modelling, Learning, Computing, and
Sampling, 2001.

2132

