
Memory-Based Recognition of Camera-Captured
Characters

Masakazu Iwamura
Graduate School of

Engineering
Osaka Prefecture University

masa@cs.osakafu-
u.ac.jp

Tomohiko Tsuji
Graduate School of

Engineering
Osaka Prefecture University

tsuji@m.cs.osakafu-
u.ac.jp

Koichi Kise
Graduate School of

Engineering
Osaka Prefecture University
kise@cs.osakafu-u.ac.jp

ABSTRACT
This paper addresses how to quickly recognize a character
pattern using a lot of case examples without learning. Here
without learning means just finding the most similar exam-
ple from the case examples, and pretend as if the OCR un-
derstands the definition of the character. This strategy is
expected to work well in most cases with a large dataset,
however, also expected to take a lot of time for finding the
most similar example. In this paper, we show that a lot
of case examples can be processed in a short time. As a
testbed, we handle recognition problem of camera-captured
printed characters. Using a database storing 100 fonts, the
proposed method achieved 97.0% of recognition rate for im-
ages captured from the right angle and 95.8% for those from
45 deg. with 4.56ms of processing time, that is about 220
characters per second including every process.

Categories and Subject Descriptors
I.7.5 [DOCUMENT AND TEXT PROCESSING]: Doc-
ument Capture—Optical character recognition (OCR); H.2.8
[Database Applications]: Image databases; H.3.3 [Infor-
mation Search and Retrieval]: Search process

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
This paper is concerned with handling a lot of character
images as case examples for character recognition. Suppose
that there are a lot of, say trillions of, character images
with class labels. In such a case, is it adequate to perform
character recognition without learning? Here learning means
condensation of information extracted from training data,
like calculating decision boundaries of character classes. In
the contrary, without learning means just finding the most
similar example from the case examples, and pretend as if
the OCR understands the definition of the character. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAS ’10, June 9-11, 2010, Boston, MA, USA
Copyright 2010 ACM 978-1-60558-773-8/10/06 ...$10.00

answer to the question can be both yes and no; the answer
yes may come from expectation that most similar examples
are covered in the case examples, and the answer no may
come from concern about existence of a heavily deformed
character image which may be not covered. Even if we have a
lot of case examples and many people say yes to the question,
taking a lot of time for finding the most similar example
is meaningless. Therefore, a technique to do it quickly is
required.

In this paper, we show that a lot of case examples can be pro-
cessed in a short time. As a testbed, we handle recognition
problem of camera-captured printed characters. However,
camera-captured character images may suffer from perspec-
tive distortion and preparing all the distorted images is not
realistic. Therefore, coping with the problem by combining
case examples and invariants of affine distortion, which is
an approximation of perspective distortion, should be well-
balanced.

Following the line, we already proposed such a method en-
abling us to recognize camera-captured printed characters
in a complex layout in real-time [3, 4] and demonstrated it
in CBDAR2009. This is the first method which satisfies the
following three requirements: (1) ready for real-time pro-
cessing, (2) robust to perspective distortion, (3) free from
layout constraints. The method is based on affine invari-
ant matching of connected components (CCs) stored in the
database and captured with a camera. The speed is around
200 to 250 camera-captured characters per second. However,
there are two main drawbacks; one is that the recognition
performance is not sufficient especially for perspective im-
ages; the other is that storing CCs of many fonts in the
database reduces the recognition rate.

For the sake of resolving the problems above, in this pa-
per we introduce an approximate nearest neighbor search
method [5] originally designed for specific object recogni-
tion. In the experiments, we confirmed that our new method
greatly improved the recognition performance with an eval-
uation using character images of 100 fonts. The proposed
method achieved 97.0% of recognition rate for images cap-
tured from the right angle and 95.8% for those from 45 deg.
with 4.56ms of processing time, that is about 220 characters
per second including every process.

89

1.1 Problem Definitions
Let us confirm the problem definitions. First of all, we as-
sume black characters are written on a white paper for sim-
plicity. Since character images are captured by a camera,
they can suffer from perspective distortion and be degraded
by defocus and low resolution. We assume, however, CCs of
characters are extractable. We also assume all characters in
the image exist on a flat paper (co-planer).

1.2 Applications of the proposed method
Realization of camera-based character recognition has a tremen-
dous amount of potential. A convincing application is a
webcam-based interface. This can realize the translation
camera [7] and scene text explorer. The former is a portable
translation device integrated with a camera-based OCR, and
tells us the translated word or text pointed out with a web
camera. The latter is a browser to make a word or text in a
scene clickable by pointing it with a webcam. By clicking a
word or text, the user can obtain some related information
such as a web page and movie tied with the word or text. An-
other convincing application is keyword finder. This enables
us to find registered useful keywords in a scene and provide
them to the user including a visually disabled person. The
system is achievable by recognizing all words captured by an
omni-directional camera and providing the place where the
word found when it found.

2. OVERVIEW OF BASE METHOD
In this section, we present an overview of our previously
proposed method in CBDAR2009 [4] as the base method.
In order to realize real-time processing, the configuration of
the method is simple; adaptive binarization and contour ex-
traction are used for segmentation, and separated character
handling module and fast affine invariant matching of CCs
for recognition.

We present the basic idea of the fast affine invariant match-
ing. Let us suppose that a situation shown in Fig. 1; a
reference image and an input image suffering from affine
distortion need to be matched. In the situation, simple
comparison of two images like superimposing one image on
the other is meaningless because the shape of the input im-
age is deformed. However, if corresponding three points are
known, they can be compared reasonably after normaliza-
tion making the orange line segments in the figure have a
predetermined length and cross at right angle. This shows
that the problem to be solved is changed to how to determine
corresponding three points. For the problem, well-known ge-
ometric hashing (GH) [6, 8] provides invariant matching on
a trial-and-error basis using randomly chosen three points.
The computational cost of GH is O(P 4), where P is the num-
ber of feature points. As the feature points, all pixels on the
external contour of a CC can be used to recognize character
images. The base method reduced the computational cost to
O(P 2) by choosing two points uniquely as shown in Fig. 2,
though the remaining one point is still chosen randomly.

An overview of the base system is shown in Fig. 3. The
system consists of storage and retrieval modules of CCs and
separated character handling module. The rest of the section
is spent for presenting the details of them; the separated
character handling module, the storage module and retrieval

Comparable
Meaningless

Comparison

Normalization

Normalization

Input Image

Reference Image

Figure 1: Basic idea of CC Matching of the base method.
Since the input image is deformed, simple comparison of two
images like superimposing one image on the other is mean-
ingless. However, if corresponding three points are known,
they are comparable after normalization making the orange
line segments in the figure have a predetermined length and
cross at right angle.

1st point: Center-of-mass (uniquely determined)

2nd point: Arbitrary point (randomly chosen)

3rd point: Determined by an area ratio

 (uniquely determined)

Figure 2: How to choose three points in the base method.
Since two points are determined uniquely, computational
cost is reduced from O(P 4) to O(P 2), where P is the num-
ber of feature points. As the feature points, all pixels on the
external contour of a CC are used.

module are presented in Secs. 2.1, 2.2 and 2.3, respectively.

2.1 Handling Separated Characters
In this section, we present how to handle separated charac-
ters which consists of more than one CC such as “i” and “j.”
In order to do that, in the storage process, the number of
CCs in a character is counted. If the number is greater or
equals to two, each CC is processed separately in the storage
and retrieval modules, and the character is registered into
the separated character table shown in Fig. 4. The table
stores the relative positions and sizes between the CCs of a
character so that two CCs in the same relationship stored
in the table will be recognized as a character.

In the case of Arial font, the bottom CC of “i (bar)” has
the same shape of “I (capital ai)” and “l (lowercase el),” and
they are indistinguishable. Thus in order to recognize “i”
correctly, all CCs of the same shape such as “I” and “l” must
be checked whether it is a part of “i” or not. In order to real-
ize the process, all CCs in the same shape should be grouped
and have the same CC ID. That is, during the storage pro-
cess, each reference CC is checked one by one whether CCs
in the same or quite similar shape are already stored or not.

90

Camera

Calculation of feature vectors
Pose estimation
& Recognition

Captured
image

Decomposition into CCs

Reconstruction
of a character

Recognition

result
Reference images

Query image

AR
Degraded

image
generation

Segmentation

S
e

p
a

ra
te

 c
h

a
ra

c
te

r h
a

n
d

lin
g

 m
o

d
u

le

Retrieval module Storage module

CC Database

S
to

ra
g

e

Q
u

e
ry

Separated

character

table

Retrieval

Figure 3: An overview of the base method proposed in CB-
DAR2009 [4].

40 5

5 40

25 5

5 25

i

j

i

j

(a) relative position vector (b) Separated character table

A relative position vector of
two connected components

Area: 5

Area: 40

Figure 4: Separated character table. The elements of the
table are, from left, ©1 Shape of the connected component
(CC ID), ©2 original character, ©3 relational position of the
paired CC, ©4 the area of the CC, ©5 the area of the paired
CC.

In further detail, before storing a reference CC, it is rec-
ognized using the database in process of creation, and the
same CC ID is assigned to CCs in the same or quite sim-
ilar shape. Ideally the bottom CC of “i (bar)”, “I” and “l”
have the same CC ID. In the previous paper, grouping is
performed manually because it did not get along with the
generative learning mentioned below. However, in the cur-
rent paper, we use automatic grouping to handle quite a bit
of character images with a slight modification.

As mentioned above, the grouping method may group CCs
of different characters into one group. In such a case, as
shown in Fig. 5, we may associate more than one class label
with a group. In the figure, the group 1 is associated with
both class labels “0” and “c.” If a CC is recognized as group
1, we cannot determine the CC is “0” or “c” in the current
process and should be determined in the post processing. If
a CC of “c” is recognized as either group 1 or group 2, it
is regarded as correct recognition because both groups are
associated with the class label “c.”

Group 2

Class label

Class labels

Group 1

0 c

c

D
e
g
ra
d
a
tio
n

Figure 5: An example of grouping of connected components.
In this case, a degraded “c” belongs to group 1 shared with
“0.” Thus, group 1 has two class labels “0” and “c.” If a CC
is recognized as group 1 in the following process, the CC is
associated with both class labels “0” and “c.”

2.2 Storage module
In the storage module, binary reference CC images are stored
in the database. Each CC image undergone affine transfor-
mation is described with feature vectors whose elements are
affine invariants.

2.2.1 Degraded Image Generation
In order to cope with degradation caused by defocus and low
resolution, degraded character images are artificially gener-
ated by generative learning [1]. In this paper, nine degraded
images (including the original reference image) are created
from each reference image by applying three kinds of Gaus-
sian blurring (including no degradation) and three kinds of
degradation in resolution (including no degradation). The
created images are binarized and treated as additional ref-
erence images.

2.2.2 Feature Vector Calculation
How to calculate feature vectors is presented in two steps
with referring Fig. 6.

In the first step, a k-dimensional feature vector is created
using an invariant coordinate system spanned by two bases.
The figure in Fig. 6(a) is normalized into Fig. 6(b) with two
bases. Then, k(= l × l) uniform subregions are defined and
a histogram of black pixels shown in Fig. 6(c) is calculated.
The histogram is normalized to satisfy that the sum of bins
is 1, and finally a k-dimensional feature vector is obtained.
In this paper, we used l = 4 according to preliminary exper-
iment results.

In the second step, a (3k)-dimensional feature vector is ob-
tained. In Fig. 6(a), two bases are determined from three
points. Since three pairs of two bases can be calculated for
three points by changing the point of intersect of two bases,
we can calculate two more k-dimensional vectors in the same
manner presented above and we have three vectors in total.
Finally, by concatenating three k-dimensional feature vec-
tors, a (3k)-dimensional feature vector is obtained.

91

(c) A histogram

Basis 1

Basis 2

(b) Normalization(a) A figure

l

l

Figure 6: Calculation of a k-dimensional feature vector
based on values of k(= l × l) uniform subregions. A (3k)-
dimensional feature vector is calculated by concatenating
three k-dimensional feature vectors.

0

1

2

3

CC ID

In
d

e
x

Hash Table

Feat. Vec. Coordinates of three points

CC ID Feat. Vec. Coordinates of three points

Figure 7: Configuration of the hash table for connected com-
ponents.

A (3k)-dimensional feature vector is calculated for a set of
three points. Since three points are determined uniquely
from the 2nd point in Fig. 2, the number of the vectors
calculated for a CC is the same as the number of pixels on
the external contour of the CC. As long as the same three
points are selected, the same vector is obtained regardless
of affine distortion in theory.

2.2.3 Storage into CC Database
The base method uses the hash table shown in Fig. 7 as
the database for CCs. Each entry consists of a CC ID, a
feature vector and the coordinates of three points. The co-
ordinates of three points are used for the pose estimation in
the recognition process.

The index Hindex of the hash table is calculated using a
simple hash function given as

Hindex =

3k
X

i=1

Di−1ri

!

mod Hsize, (1)

where Hsize is the size of the hash table (219−1 was used) and
ri is the quantized value of the i-th element into D levels.
D = 2 was used according to preliminary experiment results
in this paper, though D = 3 was used in the previous paper.
Entries are stored using the list structure if collisions occur.
If the number of collisions in a hash bin is larger than c, all
the entries are discarded. c = 200 was used in this paper.

2.3 Recognition module
2.3.1 Image Acquisition
An image to be recognized is captured by a digital camera
or a web camera as a still image or a movie. A movie is

decomposed into frame images. We call each obtained image
query image.

2.3.2 Segmentation
CCs are extracted from the query image. The image is adap-
tively thresholded into the binary image and a contour ex-
traction technique is applied.

2.3.3 Feature Vector Calculation
Feature vectors are calculated from a CC. The process to
obtain the (3k)-dimensional feature vectors is almost the
same as in Sec. 2.2.2. The only difference is that the number
of feature vectors is reduced to S for speeding up. A smaller
S decreases both recognition performance and processing
time more. S = 10 was used in this paper.

2.3.4 Recognition and Pose Estimation
This section presents how to calculate the recognition results
and poses for CCs in a query image. First of all, CC IDs and
the coordinates of three feature points are obtained from the
hash table shown in Fig. 7 using the feature vectors. The
CC IDs are temporary recognition results and some of them
are wrong. Thus we have to extract correct results. In the
previous paper, a few steps of a voting procedure similar to
[2] was used. That is, as shown in Fig. 8, pose estimation
of the plane of the paper is performed, and then recognition
and pose estimation of each CC are performed.

Firstly, from the correspondence between feature points in
the query CC and a reference CC, the pose of the CC is
calculated as an affine transformation matrix. Since some of
them are wrong, they are filtered by weighted voting of CC
IDs for each CC as shown in Fig. 8(a). The reason why the
voting is weighted is a CC having longer external contour
may have unfairly large number of votes. Letting Ni be the
number of feature points (the length of the external contour)
of i-th CC, the weight for the i-th CC is defined as 1√

Ni

. Let

M be the number of the highest vote, and characters having
larger number of votes than 0.9M are grouped in estimation
group and characters having larger number of votes than
0.8M are grouped in candidate group. These groups are
defined for each query CC in a query image.

Secondly, the pose of the paper is estimated. Since we as-
sume all the characters exists on a flat paper, all CCs are
expected to share the same parameters of shear and inde-
pendent scaling. Thus, as similar to [2], a pair of plausible
parameters are estimated by using density estimation in the
2D space as shown in Fig. 8(b). That is, affine transfor-
mation matrices of the estimation group are plotted in a
2D space and the densest point represented by a red star
mark in Fig. 8(b) is selected. In order to increase reliabil-
ity, only CCs satisfying Tarea ≤ R/β2 ≤ 1/Tarea are used
for the estimation, where R is the area ratio of the CC of
the query image and the corresponding CC of the reference
image, and β is the scaling parameter calculated from the
affine transformation matrix. Tarea = 0.7 was used in the
paper.

Thirdly, the recognition result of each CC is determined.
As shown in Fig. 8(c), a pair of plausible rotation angle and
recognition result of the CC are estimated by using density

92

M

0.9M

0.8M

0

(a)Weighted Voting (Sorted)

0 was used in the proposed method

(b)Pose Estimation of Paper

Votes Est.

Gr.

Cand. Gr.

(c) Recognition and Pose Estimation of CC

Independent

Scaling

Shear
Rotation

Angle

Filtered by

Area Ratio

CC ID1 2 3 4 . . .

Parameters of

Estimation Gr.

Parameters of

Candidate Gr.

. . .

Shared by All CCs

For each CC

Figure 8: Recognition and pose estimation of a connected component in the base method. In the current paper, the thresholds
for determining estimation group and candidate group are changed to 0, so that all the characters belong to both estimation
group and candidate group.

estimation in the 2D space. Affine transformation matri-
ces of the candidate group are used. The difference from
Fig. 8(b) is that the density estimation is carried out in 1D
space since the CC ID is a discrete value. Finally, the pro-
cess in this section estimates recognition result (CC ID) and
pose (shear, independent scaling and rotation) of the CC.

3. PROPOSED METHOD
In this section, we present the proposed method in the cur-
rent paper, which improves recognition performance of the
base method. For the sake of that, we introduce two strate-
gies used in [5].

We begin with introduction of a flipping a bit strategy illus-
trated in Fig. 9. The strategy is for creating new query vec-
tors in the recognition module. As presented in Sec. 2.2.3,
each feature vector is binarized for calculating a hash in-
dex with Eq. (1). The strategy increases the number of
hash indexes calculated from a vector. This can increase
both recognition rate and processing time. In the prelimi-
nary experiment, we confirmed that this increased at most
about 0.3% in recognition rate and constantly about 0.1ms
in processing time. e = 0.002 and b = 8 were used for 48-
dimensional vectors in this paper.

Secondly, we introduce distance calculation. As presented in
Sec. 2.3.4, some of feature vectors retrieve wrong entries. In
the previous method, relatively reliable ones are extracted
from them by voting strategy illustrated in Fig. 8(a). In the
current paper, the extraction is performed by distance cal-
culation of feature vectors. That is, Euclidean distances be-
tween the original feature vector of the query CC and feature
vectors obtained from the hash table are calculated. Then,
feature vectors having smaller distances than a threshold are
extracted. Since the extraction by the distance calculation is
very effective, the weighted voting presented in Sec. 2.3.4 is
not used anymore. In other words, the thresholds for deter-
mining estimation group and candidate group are changed to
0, so that all the characters belong to both estimation group
and candidate group. 0.1 was used for the threshold in this
paper. In the preliminary experiment, we confirmed that
this increased from 2.86% to 3.14% in recognition rate and

2 41

1

0

Threshold

G
e

n
e

ra
te

d

fe
a

tu
re

 v
e

c
to

rs

O
rig

in
a

l

fe
a

tu
re

 v
e

c
to

r

Dimension

3 6 85 7 10 129 11

e

e

1 234

1

2

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 1,)

0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1 1,（)

0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1 1,（)

0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1 1,（)

Figure 9: Binarization and query vector generation in [5] in
the case of 12 dimensions and b = 2. When a real-valued
vector is binarized, the differences between the threshold
and the values of vector’s elements are sorted in ascending
order. First at most b elements whose differences are less
than e are flipped to generate new query vectors. In the
case, dimensions 7 and 9 are selected for flipping and three
new vectors are created in addition to the original one.

at most 0.7ms in processing time. Note that the method in
[5] is different a bit from the one we presented here. That
is, the method uses only the feature vector which has the
smallest Euclidean distance. However, in a preliminary ex-
periment, the recognition performance of the strategy was
lower than the one using a threshold.

4. EXPERIMENT
In order to evaluate the effectiveness of the proposed method,
an experiment of recognizing camera-captured characters in
various fonts was carried out. 100 fonts were selected from
the ones installed to Microsoft Windows 7, excluding ones
having thin strokes to avoid a CC being decomposed. 10
fonts shown in Fig. 10 were selected for testing from the 100
fonts. In the experiment, the number of fonts stored in the
database was increased, and recognition rates and process-
ing time were observed. When the number of fonts was one,

93

0123ABCDabcd

0123ABCDabcd

0123ABCDabcd

0123ABCDabcd

0123ABCDabcd

0123ABCDabcd

0123ABCDabcd

0123ABCDabcd

0123ABCDabcd

Arial

Century

Times New Roman

Verdana

OCRB

Book Antiqua Bold

BellGothicStd-Black

Franklin Gothic Medium

TektonPro-Bold

Figure 10: Fonts used as recognition targets.

(a) 0 deg. (b) 30 deg. (c) 45 deg.

Figure 11: Camera-captured images of a recognition tar-
get of Arial font captured from various angles and cropped
manually.

only Arial font was stored in the database and used for test-
ing. When the number increased to two, Arial and Century
fonts were used for both storage and testing. Similarly, fonts
stored in the database were used for testing up to 10 fonts.
When the number of fonts was larger than 10, all the fonts
shown in Fig. 10 were used for testing.

We employed 62 characters of numerals and alphabets: 10
figures, 26 lowercase alphabets and 26 capital alphabets.
Since eight degraded images were created for each character
image, in total 55800 images were stored in the database.
Recognition targets were prepared to contain each charac-
ter twice (124 characters in total) in the same layout for all
fonts. They were printed on a A4 paper and captured with a
digital camera. The camera-captured images of the recogni-
tion target of Arial font captured from 0, 30 and 45 deg. are
shown in Fig. 11. The sizes of the images were 1549× 2197,
1441 × 2201 and 1249 × 2213, respectively.

As presented in Sec. 2.1, CCs were automatically grouped
during the storage process. For checking whether the database
already contains CCs in the same or quite similar shape to
the new CC, the proposed method without generating new
query vectors was used. Table 1 shows the result of the au-

Table 1: The grouping result of 62 characters of Arial font.
48 groups were obtained by the automatic grouping pre-
sented in Sec. 2.1. The table shows that only groups associ-
ated with more than one character class.

0 O c o 6 8 9 S e C c E m
I i(bar) i(dot) j(dot) l N Z z S s V v

W w b q d p n u

tomatic grouping when the number of fonts was one (i.e.,
Arial font only). For 62 characters of Arial font, 48 groups
were created. The table shows only groups associated with
more than one character class.

The experiment was carried out on a server with AMD
Opteron 2.8GHz. In order to reduce the computational cost,
reference images and query images were normalized so that
the largest sizes of the width and height of an image were
100 pixels and 50 pixels, respectively.

The results shown in Figs. 12(a) and (b) are recognition rates
and average processing time per character including every
process, respectively. In the figure, “CBDAR2009” repre-
sents the base system. The figures show that the proposed
method achieved 97.0% of recognition rate for images cap-
tured from the right angle and 95.8% for those from 45 deg.
with 4.56ms of processing time, that is about 220 characters
per second including everything. The differences between
the proposed method and the base method were 3.20% in
recognition rate of 0 deg. and 3.63% in 45 deg. with increase
of about 0.75ms in average processing time. They show that
the effectiveness of the newly introduced strategies and that
the total performance of the proposed method is very high.

Figs. 12(c), (d) and (e) show the number of groups, the num-
ber of entries stored in the database and memory amount,
respectively. They show that all of them increased as the
number of fonts increased. However, the gradients of them
were not the same. The gradient of the number of groups
was especially large when the number of fonts was less than
10. This means that CCs of newly added fonts tended to
belong to existing groups rather than created a new group
when the number of fonts was larger than 10. The gradient
of the number of entries decreased as the number of fonts
increased. The reason seems that the number of collisions
in many hash bins exceeded the threshold and all the entries
in the bins were discarded. In the contrary, the gradient of
memory amount did not change so much. This means that
even if the gradients of the number of groups and entries de-
creased, the information on the new CCs kept stored in the
database. This may comes from an implementation mat-
ter related to the vector class of C++ STL. Finally, for 100
fonts, the memory amount exceeded 6.5GB and the number
of entries was about 7.9 million. Nevertheless, average pro-
cessing time did not increase so much. This also shows the
effectiveness of the proposed method.

5. CONCLUSIONS
This paper addressed how to quickly recognize a charac-
ter pattern using a lot of case examples. This strategy is
expected to work well in most cases with a large dataset,

94

however, also expected to take a lot of time for finding the
most similar example. In the experiment of camera-captured
printed characters, we showed that a lot of case examples
were processed in a short time. That is, using a database
storing 100 fonts, the proposed method achieved 97.0% of
recognition rate for images captured from the right angle
and 95.8% for those from 45 deg. with 4.56ms of process-
ing time, that is about 220 characters per second including
everything.

In this paper, we did not take care about the memory amount.
Thus future work includes reduction of memory amount.

6. ACKNOWLEDGMENTS
This research was supported by KAKENHI 21700202 and
Research for Promoting Technological Seeds, JST, 2009.

7. REFERENCES
[1] H. Ishida, S. Yanadume, T. Takahashi, I. Ide,

Y. Mekada, and H. Murase. Recognition of
low-resolution characters by a generative learning
method. In Proc. CBDAR2005, pages 45–51, 2005.

[2] M. Iwamura, R. Niwa, A. Horimatsu, K. Kise,
S. Uchida, and S. Omachi. Layout-free dewarping of
planar document images. In Proc. DRR XVI, 7247-36,
Jan. 2009.

[3] M. Iwamura, T. Tsuji, A. Horimatsu, and K. Kise.
Real-time camera-based recognition of characters and
pictograms. In Proc. 10th International Conference on
Document Analysis and Recognition (ICDAR2009),
pages 76–80, July 2009.

[4] M. Iwamura, T. Tsuji, A. Horimatsu, and K. Kise.
Real-time recognition of camera-captured characters in
complex layouts. In Proc. Third International
Workshop on Camera-Based Document Analysis and
Recognition (CBDAR2009), pages 53–60, July 2009.

[5] K. Kise, K. Noguchi, and M. Iwamura. Simple
representation and approximate search of feature
vectors for large-scale object recognition. In Proc. 18th
British Machine Vision Conference (BMVC2007),
volume 1, pages 182–191, Sept. 2007.

[6] Y. Lamdan and H. J. Wolfson. Geometric hashing: a
general and efficient model-based recognition scheme.
In Proc. ICCV1988, pages 238–249, 1988.

[7] Y. Watanabe, Y. Okada, Y.-B. Kim, and T. Takeda.
Translation camera. In Proc. ICPR1998, pages
613–617, 1998.

[8] H. J. Wolfson and I. Rigoutsos. Geometric hashing: an
overview. IEEE Computational Science and
Engineering, 4(4):10–21, 1997.

95

88

90

92

94

96

98

100

CBDAR2009

Proposed method

Proposed method, 0 deg.

Proposed method, 30 deg.

Proposed method, 45 deg.

CBDAR2009, 0 deg.

CBDAR2009, 30 deg.

CBDAR2009, 45 deg.

No. of Fonts

R
e

c
o

g
n

it
io

n
 R

a
te

 (
%

)

0 10 20 30 40 50 60 70 80 90 100

(a) Recognition rates.

CBDAR2009

Proposed method

Proposed method, 0 deg.

Proposed method, 30 deg.

Proposed method, 45 deg.

CBDAR2009, 0 deg.

CBDAR2009, 30 deg.

CBDAR2009, 45 deg.

0

1

2

3

4

5

6

No. of Fonts

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

0 10 20 30 40 50 60 70 80 90 100

(b) Average processing time.

0

100

200

300

400

500

600

700

No. of Fonts

N
o

.
C

la
s
s
e

s

0 10 20 30 40 50 60 70 80 90 100

(c) Number of groups.

0

1

2

3

4

5

6

7

8

No. of Fonts

N
o

.
o

f
E

n
tr

ie
s
 S

to
re

d
 i
n

 t
h

e
 D

a
ta

b
a

s
e

 (
x

1
0

6
)

10 20 30 40 50 60 70 80 90 1000

(d) Number of entries stored in the database.

0

1

2

3

4

5

6

7

No. of Fonts

M
e

m
o

ry
 A

m
o

u
n

t
(G

B
)

10 20 30 40 50 60 70 80 90 1000

(e) Memory amount.

Figure 12: Experimental results.

96

