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Abstract Approximate nearest neighbor search is a technique which greatly reduces processing time and required
amount of memory. Generally, there are the relationships of trade-off among accuracy, processing time and memory
amount. Therefore, analysis on the relationships is an important task for practical application of the approximate
nearest neighbor search method. In this paper, we construct a model of approximate nearest neighbor search
methods with accessing neighboring buckets, and derive theoretical formulas in accuracy. The effectiveness of the
formulas have been proved by comparing simulation results with experimental results.

Key words Approximate Nearest Neighbor Search, Locality Sensitive Hashing, Neighboring Buckets Accessing
Hashing, Derivation Theoretical Formulas

1. Introduction

Recently, several applications which use large scale

databases have been developed. In the applications, the near-

est neighbor search which finds the closest datum to the query

is usually used. The applications require high-speed and less

memory retrieval of similar samples to the query from large

amount of stored data. In order to achieve nearest neighbor

search with high-speed and less memory, many methods have

been proposed. However, the exponential order of the num-

ber of data or dimensionality is required for computational

cost or memory amount of these methods [1].

In order to alleviate the problem, approximate nearest

neighbor search which has less computational cost and mem-

ory amount than the nearest neighbor search has been pro-

posed. It can greatly reduce the computational cost by allow-

ing wrong search in a certain rate. Most of the approximate

nearest neighbor search methods using hash functions ob-

tain the approximate nearest neighbor from candidates using

distance calculation. Generally speaking, however, the more

computational cost or memory amount reduces, the more ac-

curate decreases, because there are the tread-off relationships

among accuracy, computational cost and memory amount.

Thus, to analyze the relationships is an important research

topic. In this research, we focus the hash-based approximate

nearest neighbor search [2]∼[5].

Locality Sensitive Hashing (LSH) [6]∼[8] is one of the most

famous methods of approximate nearest neighbor search us-

ing hash functions. LSH receives attention because its time

complexity and space complexity are analyzed.

Methods which access neighboring buckets to reduce com-

putational cost or memory amount in comparison with LSH

have been proposed in [9]∼[11]. However, these methods

have not been analyzed well. Thus, in this paper, we model

the methods which access neighboring buckets and derive

theoretical formulas of accuracy defined as the probability

that the exact nearest neighbor is correctly found.

2. Related methods

2. 1 Locality Sensitive Hashing
Locality Sensitive Hashing (LSH) [6]∼[8] retrieves close

points with high probability and far points with low prob-

ability thanks to locality sensitive hash functions. In vector

space, a locality sensitive hash function is defined by

h(p) =
⌊a ·p+b

w

⌋
, (1)

where a is a d-dimensional random vector whose elements

follow the standard Gaussian distribution, b is a real num-

ber chosen uniformly from the range [0,w], and w indicates

the width of hash bins [7]. The region defined by a locality

sensitive hash function is illustrated in Fig. 1 (a). The points

existing in the colored region are regarded as approximate

near neighbors and used as candidates for succeeding exhaust

search.
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Figure 1: The regions that approximate near neighbors exist, defined
by locality sensitive hash functions. (a) The region of one hash func-
tion. (b) The region of a bucket (yellow region) consisting of two hash
functions. (c) The region of two buckets.
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Figure 2: The apparent widths in the feature space change according to
the norm of a vector ‖a‖. While the width in the projected space (left
column) is the same, the corresponding width in the original feature
space (right column) are different.

In high-dimensional space, however, too many points are

retrieved as the approximate near neighbors. Thus, as shown

in Fig. 1 (b), LSH constructs a bucket by combining multiple

(say k) hash functions. The region of the bucket is defined by

the intersection of the regions of hash functions.

In order to increase the probability of retrieving the exact

near neighbors, LSH also uses multiple (say L) buckets as il-

lustrated in Fig. 1 (c). The region is defined by the union of

the regions of buckets.

Finally, for subsequent discussions, we should care about

widths of bins. As in Fig. 2, the widths of bins in the fea-

ture space change due to the effect of projection. We call the

width in the feature space apparent width, which is denoted by

w′ = w
‖a‖ .

(a) (b) 

Figure 3: Accessing the neighboring bin. If the query exists near the
border of a hash bin, the next bin is accessed. In this way, the query
exists almost center of the united bin which consists of two bins.

2. 2 Methods which access neighboring buckets
LSH has problems that when the number of L is small,

accuracy is low, and when the number of L is large, com-

putational cost and memory amount are large. It is because

LSH cannot efficiently obtain points near the query. In order

to resolve the problem, the method of object recognition by

Noguchi et al. [9], Principal Component Hashing (PCH) [10]

and Multi-Probe LSH (MPLSH) [11] which are methods of the

nearest neighbor search employing “Accessing neighboring

buckets.”

These three methods have an attitude in common. As in

Fig. 3(a), when the query exists near the border of the bins,

the exact nearest neighbor is not contained in the candidates

of the nearest neighbor because the exact nearest neighbor

can exist in the neighboring bin with probability of almost

1/2. For the sake of coping with the problem, LSH uses a

number of hash functions to increase the probability that the

exact one is contained in the candidates. However, if we can

make the bucket as in Fig. 3(b) where the query exists in the

almost center of the united bin which consists of two bins,

the exact nearest neighbor is supposed to be contained in the

candidates of the nearest neighbor without using a lot of hash

functions. This idea is common among three methods.

The method of object recognition by Noguchi et al. [9] real-

izes the specific object recognition with approximate nearest

neighbor search. In the approximate nearest neighbor search,

hashing is used. When the distance between the query and

the border of bins is smaller than a predetermined threshold,

the neighboring buckets are accessed.

PCH [10] is a method of approximate nearest neighbor

search which uses hash functions like LSH. PCH assumes that

data follow normal distribution and realizes efficient approxi-

mate nearest neighbor search using principal components. In

order to increase the accuracy, PCH accesses neighboring bins

to the bin that the query exists. PCH cannot construct several

hash functions because principal components are uniquely

determined for data.

MPLSH [11] improves LSH. In order to reduce memory

amount, MPLSH accesses several neighboring buckets be-
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Figure 4: A sketch of NBAH. When the query exists near the border
of bins (the distance to the border is less than sw′ ), the neighboring
bin is treated as the one that the query exists.

cause the probability that the nearest neighbor exists around

the query is high. Neighboring buckets are accessed in as-

cending order of the distances between the query and the

border of the hash bins.

3. Neighboring Buckets Accessing Hashing

In this section, in order to evaluate three models of access-

ing neighboring methods, we create a model of the methods

which accesses the neighboring buckets. We call the model

of Neighboring Buckets Accessing Hashing (NBAH). NBAH

uses Eq. (1) as the hash function. Whether neighboring buck-

ets are accessed or not is determined by similar rule to [9].

That is to say, if the distance between the query and the bor-

der of the bins is smaller than the predetermined threshold,

the neighboring buckets are accessed.

We define NBAH. First of all, as in Fig. 4, let s be the thresh-

old which determines whether the neighboring buckets are

accessed or not. When the distance between the query and

the border of the bins is smaller than sw′, the neighboring bin

is treated as the bin which contains the query and data in the

neighboring bin are used for distance calculation. In order to

define it, let h+(·) and h−(·) be

h+(p) =
⌊a ·p+ b

w
+ sw′

⌋
(2)

h−(p) =
⌊a ·p+ b

w
− sw′

⌋
. (3)

If h(q)− h−(q) ! 0, then the data in h(q)− 1 are treated as the

ones in the bin of the query．If h(q)−h+(q) ! 0, then the data

in h(q)+1 are treated as the ones in the bin of the query．

4. Derivation of the theoretical values

In this section, we derive theoretical formulas of accuracy

using the model with a simple rule presented in Sec. 3.. Let d
be the dimensionality.

4. 1 Accuracy
As mentioned in Sec. 1., we define the accuracy as proba-

bility that the exact nearest neighbor is found.

All data are
distributed uniformly

R

R

max

Query p*

Figure 5: The model used for derivation of accuracy formula. All data
are uniformly distributed in a very large query-centered hypersphere
with radius Rmax. A point p∗ is placed on the surface of a hypersphere
with radius R.

Accuracy increases as the volume of the buckets (e.g.,

Fig. 1 (c)) increases. However, it is determined by the rela-

tive positions of the buckets to the query because the exact

nearest neighbor is likely to exist in a relatively close region.

For the sake of simplicity, we create a simple model; as shown

in Fig. 5, all data are uniformly distributed in a very large

query-centered hypersphere with radius Rmax, and a point p∗

is placed on the surface of a hypersphere with radius R. Then,

the probability that p∗ exists in the bin of the query is calcu-

lated. Since the model is mirror symmetric, we consider only

the right half-hypersphere. In the following steps, we derive

the two formulas using the model.

[Step 1]
As shown in Fig. 6, let u be the relative position of the query in

the bin. In this step, we obtain Ph(u,s,w′,R) which is the proba-

bility that p∗ falls into the bin of the query in a single hash func-

tion. The probability is calculated as the ratio of the following

two volumes: (i) the surface area of the half-hypersphere (the

length of orange and green curves in Fig. 6), and (ii) the over-

lapping surface area between the hypersphere and the bin of

the query (the length of orange curves in Fig. 6). The surface

area (i) is easily obtained as Sd(R) = 2πd/2

Γ(d/2) Rd−1 which is the

surface area of a d-dimensional hypersphere with radius R.

The surface area (ii) is a bit complicated because, as shown in

Fig. 6, the surface area changes due to the relationship among

R, s, w′, and u.

We present a way of calculation of the surface area (ii),

which is given by

Sd
0(R) =

∫ π
2

θ(u)
Sd−1(Rsinφ)R dφ, (4)

where
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Figure 6: The relationships between the half-hypersphere and the bin of the query. (a) Whole the half-hypersphere is contained in a single
bin. (b) Part of the half-hypersphere is contained in a single bin. (c) Whole the half-hypersphere is contained in two bins. (d) Part of the
half-hypersphere is contained in two bins. As presented in Step 1 of Sec.4, Ph(u,s,w′,R) is given by (the length of orange curves) / (the length of
orange and green curves).

θ(u) =



0, for Fig. 6 (a) and Fig. 6 (c)

cos−1 u
R , for Fig. 6 (b)

cos−1 u+w′
R , for Fig. 6 (d).

(5)

Finally, we obtain the ratio of two surface areas as

Ph(u,s,w′,R) =
Sd

0(R)

Sd(R)/2
. (6)

In the following steps, we take care of changes of the param-

eters u, w′ and R to the probability of Eq. (6), respectively.

[Step 2]
In this step, we take into account the change of the relative

position u of the query. Let Ph(s,w′,R) be the expectation of

Eq. (6) for u.

Since b of Eq. (1) follows the continuous uniform distribu-

tion U(0,w) and the positions of bins are determined according

to b, the distribution of u is also U(0,w). Therefore, Ph(s,w′,R)

is given by

Ph(s,w′,R) =
1

w′

∫ w′

0
Ph(u,s,w′,R) du. (7)

[Step 3]
In this step, we take into account change of the apparent width

w′ = w
‖a‖ .

Let A = ‖a‖. Since each element of the vector a follows

Gaussian distribution, A follows χ2-distribution. Thus the

expectation of Ph(s,w′,R) = Ph
(
s, w

A ,R
)

for A is obtained as

Ph(s,w,R) =
∫ ∞

0
pχ2 (A)Ph

(
s,

w
A
,R
)

dA, (8)

where pχ2 (A) is the probability density function of χ2-

distribution.

[Step 4]
In this step, we take into account change of the radius R. As

in the previous steps, the expectation of Eq. (8) for R is given

by

Ph(s,w) =
∫ Rmax

0
p(R)Ph(s,w,R) dR, (9)

where p(R) is the probability density function of R. Let

Vd(Rmax) be the volume of the d-dimensional hypersphere

with radius Rmax. That is to say, Vd(Rmax) = πd/2Rd
max

Γ[(d/2)+1] . The

probability density of the exact nearest neighbor, which is

directly derived from Eq. (2.1.6) in p.10 of [12], given by

p(R) =N
[
1− Vd(R)

Vd(Rmax)

]N−1 sd(R)
Vd(Rmax)

(10)

is used, where N is the number of the data exist in the very

large hypersphere with the radius Rmax.

[Step 5]
The probability calculated in the previous steps is with respect

to a single hash function. Since NBAH constructs buckets us-

ing multiple hash functions, the probabilities with respect to

buckets are calculated in this step. Let P(s,w) be the proba-

bility that the query and the exact nearest neighbor exist in at

least one bucket. Finally, as written in [6], P(s,w) is obtained

by

P(s,w) = 1− [1− {Ph(s,w)}k]L. (11)

5. Evaluations

In this section, in order to check the validity of formulas,

we compare solutions of formulas to simulation results. As

simulations, we carried out approximate nearest neighbor ex-

periments in the same conditions that we assumed to derive

the theoretical formulas. That is, data follow identical uniform

distribution independently.
5. 1 Simulations
Simulation was carried out using artificial data. We gener-

ated artificial data whose dimensionality was 100. Data are

uniformly distributed in the range [0,1300]. The number of the

data was 100000 and the number of queries was 1000. Accu-

racy is defined as the ratio that approximate nearest neighbors

correspond to the exact ones. Memory amount was averaged

for queries and for each set of the parameters. As the param-

eters, we used w = 5000，k = 3 and several values of L. s = 0

means LSH because no neighboring bins is accessed.
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Figure 7: Memory amount requirement for hash-based approximate
nearest neighbor search. c1, c3 and c4 are 4 bits for int, 8 bits for double
and so on.

5. 2 Theoretical values
We verified the formulas which we derived. We used

Eq. (11) as the accuracy and n{(c1 + c2)kL+ (c3d+ c4)} as the

memory amount, where, as see in Fig. 7, c1 is a constant which

is determined by data type of array, c2 is the memory amount

used for a pointer, c3 is a constant which is determined by data

type of contents, and c4 is the memory amount used for data

ID which is sometimes needed according to applications. We

obtained the value of solution of Eq. (11) by Monte Carlo ap-

proach because Eq. (11) contains an integration which cannot

be solved analytically. We calculated memory amount using

c1 = 4, c2 = 0, c3 = 8 and c4 = 4 which are determined based on

implementation.

5. 3 Comparison
Fig. 8 (a) and Fig. 8 (b) show the relationships between the

accuracy and the memory amount. Fig. 8 (a) is the result of

simulations and Fig. 8 (b) is the solutions of theoretical formu-

las. In addition, the same values of parameters for theoretical

values and simulation were used. When these figures fit each

other, we can say that theoretical formulas are valid.

As in Fig. 8, theoretical values were better than simulation

values. In addition, Fig. 9 shows comparison between the the-

oretical values and the result of simulations of accuracy. The

filled points in the figure represent theoretical values. In ad-

dition, a same shape indicates a same value of s. As in Fig. 9,

we can also see that theoretical values were better than results

of simulations. The difference comes from the difference of

the nature of both values. While results of simulations have

a lot of scatter, theoretical values are the expectation values.

In addition, Eq. (11) contains the one which raises to the k-th

power and L-th power. That is why the theoretical values

were better than results of simulations.
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Figure 9: Comparison between theoretical values and simulation re-
sults of accuracy in change of the number of buckets L in the range
[1,50]. d = 100, k = 3, w = 5000 were used.

6. Conclusion

In this paper, we created a model of Neighboring Buckets

Accessing Hashing and derived theoretical formulas of accu-

racy. In addition, we compared theoretical values to result of

simulation. We confirmed that the results of accuracy is ba-

sically good. Future work includes derivation of theoretical

formulas of computational cost.
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