
Reliable Online Stroke Recovery from Offline Data with the Data-Embedding Pen

Marcus Liwicki∗, Yoshida Akira†, Seiichi Uchida†, Masakazu Iwamura‡, Shinichiro Omachi§ and Koichi Kise‡

∗DFKI, Germany, Email: marcus.liwicki@dfki.de
†Kyushu University, Japan, Email: yoshida@human.ait.kyushu-u.ac.jp, uchida@ait.kyushu-u.ac.jp

‡Osaka Prefecture Univ., Japan
§Tohoku Univ., Japan

Abstract—In this paper we propose a complete system for
online stroke recovery from offline data. The key idea of our
approach is to use a novel pen device which is able to embed
meta information into the ink during writing the strokes. This
pen-device overcomes the need to get access to any memory
on the pen when trying to recover the information, which
is especially useful in multi-writer or multi-pen scenarios.
The actual data-embedding is achieved by an additional ink-
dot sequence along a handwritten pattern during writing.
We design the ink-dot sequence in such a way that it is
possible to retrieve the writing direction from a scanned image.
Furthermore, we propose novel processing steps in order to
retrieve the original writing direction and finally the embedded
data. In our experiments we show that we can reliably recover
the writing direction of various patterns. Our system is able
to determine the writing direction of straight lines, simple
patterns with crossings (e.g., “x” and “ll”), and even more
complex patterns like handwritten words and symbols.

Keywords-data-embedding pen; stroke recovery; information
encoding

I. INTRODUCTION

It is widely agreed that online handwriting recognition

perform better than their offline counterpart [1]. Therefore,

one focus of the handwriting recognition community is to

recover the online trajectory from offline images in order to

improve the performance of the recognizer.

A summary of pen trajectory recovery methods until 2010

has been given in [2]. There different approaches for image

processing and local examination have been compared. [2]

identified two different types of input material, i.e., skeleton

or contour. Furthermore, they presented methods to treat

ambiguous zones, double traced handwriting, hidden loops,

and end-points. Finally, methods for global reconstruction

have been summarized.

In this paper we embed additional information during

the writing process which encodes the direction and ve-

locity information. Such information may be beneficial for

improved handwriting recognition or writer identification.

Furthermore, we enhance the stroke recovery process to

make use of this information. This idea is realized by using a

pen which is capable of producing small ink-dots alongside

the handwritten stroke [3]. If these ink-dots are produced

in a time-synchronized manner, we are able to recover

the sequence information later. In this paper we propose

methods implementing this idea.

The data-embedding pen was originally developed to

increase the value of handwritten information on ordinary

paper and add meta-information to the offline data. This

is an orthogonal approach to other digital pens which

store the stroke sequences on a computer along with meta-

information. While those pens work on paper, they cannot

increase the value of handwriting on paper, because the

handwriting left on the paper is still just an ink pattern

without any meta-information. The general feasibility of the

data-embedding pen has been proven in [3]. The main novel

contribution of this paper is that we introduce an ink-dot

generation method which can be used for stroke trajectory

recovery.

The remainder of this paper is organized as follows. First,

Section II describes the novel digital pen device and the

data embedding. Second, Section III presents the steps for

image processing. Subsequently, Section IV Next, Section V

reports on stroke recovery experiments performed with the

new method. Finally, Section VI draws some conclusions

and gives an outlook to future work.

II. THE DATA-EMBEDDING PEN

The data-embedding pen is a device which comprises a

usual ball-point pen and an ink-jet nozzle element. Figure 1

depicts this device. During the writing, the nozzle produces

small ink-dots (called information ink) alongside the hand-

written stroke. The color of the ink-dots is different from

the color of the stroke. In this paper, yellow is used for the

ink-dots. (Invisible ink has already been tested as a good

alternative.) The number of the ink-dots and their timing

are used to encode the desired information.

The nozzle is able to generate up to 2, 000 ink-dots per

second. Using this high frequency, we can form a connected

line by a sequence of several ink-dots. Hereafter, a line by

n sequential ink-dots is called n-pulse line. If n = 1, the

n-pulse line forms a single ink-dot. The line, of course,

becomes longer by increasing n.

Our coding scheme is based on the combination of three

different n-pulse lines. Specifically, we use n = 1 (a dot), 5

(a short line), and 20 (a long line). The ink-dot sequence of

Fig. 2 consists of those n-pulse lines. Roughly speaking, the

information is converted into a binary (0 and 1) sequence

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.278

1384

Figure 1. The data-embedding pen.

(a)

(b)

Figure 2. (a) Ink-dots (light) nearby a handwriting stroke (black). (b)
After image processing.

and embedded by using the 1-pulse line as 0 and the 5-

pulse line as 1. A short pause is prepared between each bit

information (1-pulse or 5-pulse line) like in the Morse code.

The 20-pulse line, hereafter called synchronization blob, is

used as an anchor to make sure that a correct position is

extracted (see the leftmost dot in Fig. 2).

Our coding scheme is defined by three units, called frame,

block, and bit. The bit is the smallest unit and defined by

a 1-pulse line or a 5-pulse line. Several consecutive bits

comprises a block and several consecutive blocks comprises

a frame. Each frame begins (or, equivalently, ends) at a

synchronization blob.

Figure 2 is an example of a single frame. From left to

right, the ink-dot sequence of the frame is comprised of a

synchronization blob, 6 blocks, and another synchronization

blob. In each block, 4 bits are encoded and thus in the frame

24 bits (0110 − 1010 − 1010 − 1010 − 0000 − 1100) are

embedded. More information of the encoding of information

is given in [4].

In the following we present the main idea of how to

encode the direction and speed information, since the main

purpose of this paper is stroke trajectory recovery. As

described above, a sequence of n-pulse lines is produced.

This is done with a fixed frequency, i.e., the information is

produced with 100 Hz. Consequently, the bits in a block

are produced every 10 ms. After each block, a pause of

another 10 ms is added. Furthermore, an additional pause

of 10 ms is added before and after each frame, resulting

in a longer pause before synchronization blobs than after

synchronization blobs. In our experiments, the number of

bits per block is 4 and the number of blocks per frame is

2. This results in an overall time of 130 ms for one frame

Figure 3. The direction of the closest stroke to the synchronization blob
can be interpreted as the writing direction.

Figure 4. Different length of the n-pulse lines depending on the velocity.
(top: slow velocity, bottom: faster velocity)

followed by one synchronization blob.

The direction information is now embedded at the syn-

chronization blobs (appearing at 7.7 Hz). The pause before

the synchronization blob is twice as long as the pause after

the blob. Hence, the side with the shorter distance to the

next ink dot would be the one in writing direction. An

illustration of this property is shown in Fig. 3. Ideally, it

would be possible to get the correct direction information

of non-overlapping lines with a duration of at least 260 ms.

The speed information can be derived from the blocks

within the frames. Since a new n-pulse line starts every

10 ms, the actual distances between the n-pulse lines can

be used to estimate the speed. Furthermore, longer n-pulse

lines would correspond to faster writing (see Fig. 4).

Furthermore, the writing angle and the tilt of the pen

can be roughly estimated by using the correspondence

information from the ink-dots to the line (see Section IV).

Note that a shorter distance would indicate a larger tilt angle

if the nozzle is mounted on the pen as in Fig. 1.

III. IMAGE PROCESSING

Our system works on scanned and photographed images.

Especially the latter type introduces many difficulties which

do not occur on scanned images: different illuminations

(depending on the flashlight, varying sizes for the ink dots,

and different thickness for the strokes (depending on the

distance between the camera and the paper. In the this

section, the main stages for assessing these problems, as

well as the further preprocessing steps will be explained.

The results of the individual steps are depicted in Fig. 5.

There, an example of a photographed “@” symbol is given

on the top. Below, two example regions which are part of

the “@” symbol are illustrated to visualize the behavior of

1385

(a) (b) (c) (d)

Figure 5. Example of a photographed “@” symbol (a) before image processing, (b) after white normalization, (c) after color extraction and thinning, (d)
after final skeletonization.

the algorithm.1

As stated above, we can not assume the same lighting

for all the photographs. The situation is even worse, i.e.,

we face the problem of inhomogeneous lighting (usually,

the center is more exposed by the flashlight). Simply using

a global threshold for color extraction would fail under

these circumstances. Therefore, we use a low-resolution grid

(motivated from work in related areas [5], [6]) and determine

the brightest point in each sub-region. This is then used as

a reference for white in this sub-region and the color values

are normalized according to this value (white normalization).

The size of the sub-region was set to 50×50 pixels to make

sure that at least one target white pixel occurring in this

region. Note that this method also works on homogeneous

background colors (we have successfully performed small

tests with blue and yellow! background). The result of white

normalization in Fig. 5 (a) can be seen in Fig. 5 (b).

The next three steps basically follow the approach of [7].

The second step is noise removal, i.e., erosion and dilation

are applied. Figure 5 (c) shows the result. Note that the

parameters for those operations were optimized on a small

training set. The histogram of the n-pulse lines sizes is then

1The authors of this paper are aware that the yellow ink-dots in (a) and (b)
are hardly visible on a grayscale-printout. We have done this intentionally
for several reasons. First, we did not want to alter the original image in
order to show the difficulties for the algorithm. Second, the extracted ink-
dots will be marked in blue for all processed images (e.g., (c)). Finally, in
the electronic version of the publication one can see the yellow ink.

further investigated. The sizes are clustered in three regions,

small, medium and large regions. These clusters represent

the three different ns of the n-pulse lines, i.e., the binary

information or a synchronization blob.

The third step is a special treatment of ink-dots occluded

by the black ink stroke. During writing complex patterns, it

often appears that yellow ink-dots overlay with the stroke.

Fortunately, those yellow ink-dots are still visible on the

stroke (they just appear to be a bit darker). To overcome

this problem another thresholding operation is performed on

already extracted pixels with a lower thresholds to recover

dark yellow ink-dots. As can be seen in Fig. 5 (c), the yellow

ink dot becomes visible, even if it was totally occluded by

the black line.

The fourth step is a thinning operation on the black

ink stroke. Figure 5 (c) shows the result of an orthodox

thinning method. Then, after removing many small loops

and short spurious edges by unifying neighboring branches

as introduced in [7], the final thinning result is obtained as

shown in Fig. 5 (d).

The final result of image processing is a graph (obtained

by using the graph-representation of the skeleton, c.f.,

Fig. 5 (d)) of ink traces where nodes represent end-points in

the traces or crossings, whereas the edges represent the paths

between the crossings or end-points. The graph in Fig. 5 has

three nodes (the end-points and the crossing) and three paths

(the two paths at the end points and the loop).

1386

IV. STROKE RECOVERY

As mentioned in Section II the information ink dots were

produced in such a way that the direction, velocity, and

angle information is embedded into the ink-dot sequence to

some degree. In the following we will describe the trajectory

recovery, which is the main focus of this paper.

First, the correspondence between the information ink

dots and the stroke2 is established. The basic idea of estab-

lishing the correspondence is to find the closest point on the

stroke for each ink-dot. A simple nearest neighbor, however,

cannot always provide a correct result because a dot and its

corresponding point might be a bit distant due to the pen

tilt. Thus, at each ink-dot k, we first calculate the minimum

distance dk,θ to the stroke for each θ of 36 angles (with

10◦ interval). Then, we select the angle θ with minimum

variance, i.e., θ = argminθ Var{d1,θ, . . . , dK,θ}. This angle

is the most stable angle and thus represents a projection

of the actual pen angle and tilt during writing. Finally, for

each ink-dot k, the corresponding point is determined as the

closest point when using angle θ. If many ink-dots were

not assigned to a stroke, this process is repeated, because it

might be that the tilt has been changed during writing.

Second, an initial estimation of the path directions is per-

formed based on the information which is available from the

ink dots. This particular step makes use of the information

which has been embedded into the code during writing, i.e.,

the pauses between the ink-dots and the synchronization

blobs differ (see above).

Hence the synchronization blobs are taken into account

for direction estimation. For each synchronization blob, the

path of the corresponding stroke is traced until the next

information ink dot appears. If there is an information ink

dot in both directions, the one which is closer is assumed

to lie in the direction of writing and thus a counter of this

direction is increased for that path. Then the guesses are

summed up and the direction with a higher counter is taken.

This leads to a good guess, especially for longer strokes.

Third, the nodes of the graph are taken into account. Each

node of the graph has a number of inbound, outbound and

unassigned paths (edges). As the direction of some paths

has been determined already in the second step, we now

propagate the direction information by using the following

procedure for all unassigned paths pi. The steps are applied

repeatedly (Note that each path has two corresponding

nodes):

1) If a path pi exists where one of the nodes (e.g., Node

n1) has a missing outbound edge (i.e., more paths are

ending at this node than beginning at this node) and

the other node n2 has a missing inbound edge (i.e.,

more paths are beginning at this node than ending at

2Note that a stroke is seen as the sequence of points between two
consecutive pen-down and pen-up movements.

Figure 6. Example images

this node), the direction of the edge goes from n1 to

n2.

2) Repeat 1 until no such path exist anymore.

3) If a path pi exists where one of the nodes has a missing

inbound or outbound edge, the path direction of pi is

set according to the missing path.

4) Repeat 3 until no such path exist anymore.

5) Up to now, small loops were not affected by the

previous steps. For those remaining loops we apply

the methods initially proposed by [7].

Finally, the remaining paths are considered to be double

traces. This is usually the case for crossings with three

edges, where a path continues and a short edge goes into

one direction. Due to overlay of the ink-traces in those paths

as well as the ink-blobs it is impossible to get the exact

trajectory information if there is a small difference of the

up- and down-stroke.

As a result of these processes we obtain the direction

information of all paths. Now we start to trace the lines

starting at the top-left path with an end-node of degree 1.

When arriving at a node of degree > 3 during tracing, we go

into the direction of a loop and also consider the heuristics

introduced in [7] in tied situations. After reaching an end,

the next untraced path with an end-node of degree 1 is taken

into account, etc.

V. EXPERIMENTS

In our experiments we evaluated the performance of the

stroke trajectory recovery method on patterns with different

difficulties. We collected a set of 80 − −120 samples for

each of the following patterns (Some examples are given in

Fig. 6):

• closed circles (diameter of 5 cm and 3 cm)

• straight lines (5cm) in all four directions (right, left, up,

down)

• drawn “x” (size of 3 cm and 5 cm)

• “@” symbols (size of 3 cm and 5 cm)

• “ll” (size of 3 cm and 5 cm)

• hooks (size of 3 cm and 5 cm)

• the word “Clever” (height 4 cm)

All examples have been written by a person who was not

aware of the processing methods. Note that most of these

patterns contain samples where it is not possible to perfectly

1387

Table I
DIRECTION DETECTION ACCURACY IN %

System circles lines “x” “ll” hooks clever
3 cm 5 cm down right up left 3 cm 5 cm 3 cm 5 cm 3 cm 5 cm

[7] — — 100 100 0 0 50 50 100 100 100 100 80
Proposed 100 100 100 100 100 100 79 98 45 100 100 100 95
With post-processing 100 100 100 100 100 100 79 98 100 100 100 100 96

Figure 7. A problematic case where the information ink is smudged by
the ballpoint pen

recover the trajectory information if no information ink is

available.

In our experiments on this data set we investigated the

performance of the direction detection algorithm, because

this is the main advantage of our method (Note that the

image processing is the state-of-the-art skeletonization [2]).

A method without using the information ink trace, i.e., the

approach of [7], has been used as a reference system. The

accuracy is defined as the number of path with a correctly

identified direction divided through the number of all paths.

The results of the trajectory recovery appear in Table I.

As can be seen, the algorithm of [7] performs already good

on many patterns. However, it has some complications with

closed circles, lines which go against the natural direction,

and two-stroke patterns.

Using the embedded information significantly increases

the performance. Our method works perfect on most pat-

terns. Only small patterns introduce some complications. A

simple idea for post-processing is to apply the method of [7]

if only a single path is available and no direction could

be determined. The last row shows the performance if this

strategy is applied. The final method performs with 100 %

on 10 out of 13 patterns.

An analysis of the failures shows that during acquisition

the ink-dots were often overlapping the pen-stroke. Often,

this causes no problem, however, when the tip of the

ballpoint pen touches already existing information ink-dots.

In this case the ink is smudged by the pen and therefore

our algorithm is not able to recover the correct information

(see Fig. 7. In future we will try to tackle this problem by

improving the image processing technologies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an orthogonal approach

for online stroke trajectory recovery. We propose a special

pen device which is able to produce a sequence of informa-

tion ink-dots next to the handwritten stroke. We introduce

a special procedure for generating these ink-dots making it

possible to recover the direction information, as well as the

speed and up to some degree the angle and tilt of the pen

during writing. Furthermore, we added novel steps to the

recovery process which take the ink-dot information into

account.

Our experiments emphasize the strengths of our approach.

For most patterns we could perfectly recover the correct

writing directions. By the help of the information ink-dots

we are able to outperform standard recovery approaches.

In future we plan to improve the image processing of our

method. Furthermore, we have received an ink-device which

is able to produce even smaller dots. This will be used in

a large-scaled evaluation experiment in order to assess the

overall recovery and embedding power of our algorithms.

ACKNOWLEDGMENT

This work has been financially supported by the ADIWA

project.

REFERENCES

[1] R. Plamondon and S. N. Srihari, “On-line and off-line hand-
writing recognition: a comprehensive survey,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp.
63–84, 2000.

[2] V. Nguyen and M. Blumenstein, “Techniques for static hand-
writing trajectory recovery: a survey,” in Proceedings of the 9th
IAPR International Workshop on Document Analysis Systems,
2010, pp. 463–470.

[3] M. Liwicki, S. Uchida, M. Iwamura, S. Omachi, and K. Kise,
“Data-embedding pen — augmenting ink strokes with meta-
information,” in 9th Int. Workshop on Document Analysis
Systems, 2010.

[4] ——, “Embedding meta-information in handwriting — Reed-
Solomon for reliable error correction,” in 12th International
Conference on Frontiers in Handwriting Recognition, 2010,
pp. 51–56.

[5] A. Jain, Fundamentals of Digital Image Processing. Prentice-
Hall, 1989.

[6] M. Simon, S. Behnke, and R. Rojas, “Robust real time color
tracking,” in RoboCup-2000, 2001, pp. 239–248.

[7] Y. Kato and M. Yasuhara, “Recovery of drawing order from
single-stroke handwriting images,” IEEE Trans. Pat. Anal.
Mach. Intell., vol. 22, no. 9, pp. 938–949, 2000.

1388

