
An Anytime Algorithm for Camera-Based Character
Recognition

Takuya Kobayashi, Masakazu Iwamura, Takahiro Matsuda and Koichi Kise
Graduate School of Engineering, Osaka Prefecture University

{kobayashi, matsuda}@m.cs.osakafu-u.ac.jp, {masa, kise}@cs.osakafu-u.ac.jp

Abstract—In a scene image, some characters are difficult to
recognize and some others are recognized easily. Such difficult
characters usually make the processing time long while easy
characters are recognized in a short time. In this paper, we
propose a system which recognizes each character with a proper
cost for the difficulty. Through the process, easy characters are
recognized early and difficult ones are recognized late. This is
a desired property of an anytime algorithm that the recognition
accuracy does not decrease as the time increases. In order to
realize it, we propose a method which splits the recognition
process into several times and accumulates the recognition results
and extracted features. We also discuss what is required to realize
the anytime algorithm for the scene character recognition task.
Experiments reveal that the proposed method obtains recognition
results of easy characters earlier than the conventional method.

Keywords—scene character recognition; anytime algorithm;
local feature; ASIFT; tracking; video input;

I. INTRODUCTION

As smart phones became more and more popular, many
applications of scene character recognition appeared (e.g.,
Goggle Goggles, Evernote and Utsushite Honyaku from NTT
Docomo). In order to improve their performance, realizing
a fast and accurate character recognition system is an im-
portant task. We proposed a character recognition method
using arrangements of local features [1]. The method is robust
to perspective distortions thanks to an affine invariant local
feature [2]. It is also robust to text layout changes such as
characters printed on a curved line. The most effective point
to use local features is the robustness to complex backgrounds.
Existing segmentation-based methods fail to recognize charac-
ters when some parts of a character have a similar color with
the background because those methods usually segment each
character using the color contrast between the characters and
the background. However, local features are extracted from
many parts of a character and extracted features from the
remaining parts can work well in such a case.

Though the method has such desirable properties, it is
still far from real-time processing. What is worse, there is
a limit to speed up the method because it is difficult to
reduce the computational cost of the feature extraction process.
Generally, the recognition accuracy and the processing speed
depend on complexity of the background, and the similarity of
characters and so on. As a result, some characters are difficult
to recognize though the others can be recognized easily. We
define easy characters as characters recognized in a short time
and difficult ones are the opposite. The overall processing time
is long because of the difficult characters.

Fig. 1. An experimental result showing an overview of the proposed method.
The common query image is shown in the leftmost position. The conventional
method took 1.19 seconds to detect and recognize 14 characters in the query
image with a complex background. On the other hand, the proposed method
recognizes those characters in a step-by-step manner. 6 characters are detected
and recognized in 0.39 seconds. Then, 9 characters are in 0.73 seconds, 11
characters are in 1.03 seconds, consequently, 14 characters are detected and
recognized in 1.31 seconds. Though the proposed method took 0.12 seconds
more than the conventional method to obtain the final result, some intermediate
recognition results were obtained much earlier than the recognition result
of the conventional method. Unlike the conventional methods, the proposed
method satisfies some properties of an anytime algorithm. This enables us
to obtain recognition results in the required amount of computational time
depending on the difficulty of the characters.

In this paper, we propose a character recognition method
which recognizes each character with a proper cost for the
difficulty. We show an overview of it with an experimental
result in Fig. 1. The idea is to split the recognition process
into several times and accumulate the recognition results and
extracted features. Through the process, easy characters are
recognized early and the difficult ones are recognized late.

The proposed method has some desirable properties of an
anytime algorithm [3]. An example is that the recognition
accuracy does not decrease as the processing time increases.
Therefore the user can stop the process when the user obtains
sufficient results. We also discuss how we define the anytime
algorithm for the scene character recognition task and what
type of recognition method is preferable to realize it.

II. HOW TO REALIZE AN ANYTIME ALGORITHM FOR

CHARACTER RECOGNITION METHODS

In this section, we discuss how we define the anytime
algorithm for the scene character recognition task and how to
realize it. First, we introduce the anytime algorithm. According
to [3], a method needs to own some properties so that it is
regarded as an anytime algorithm. In this paper, we take into
account the two properties below.

2013 12th International Conference on Document Analysis and Recognition

1520-5363/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDAR.2013.231

1172

��������	
���

���������
����������	
���

���
����
�����	
���

�

�� ��

�

���

� � � 	

�
�������

�

�	�����
���

�
�

!

�
�

!

�����"�����#

Fig. 2. Relationship between three types of feature extraction methods and
three methods to split the recognition process to realize an anytime algorithm.
(a) means that a query image is divided into several blocks and the whole
recognition process is sequentially applied to each of them. (b) is a coarse-
to-fine approach that features are extracted from images with changing the
resolution. (c) is to thin the pixels evenly in an image used for the feature
extraction.

• Monotonicity: the quality of the results does not
decrease as the computational time increases.

• Interruptibility: the process can be interrupted at any
time and the user can get some results at the time.

Ideally the method can measure how well the recognition
result reaches to the best result (Measurable quality). However,
satisfying this requirement is difficult for character recognition
tasks because the number of characters in query images is
unknown until they are recognized. Thus we regard a character
recognition method as the anytime algorithm if it has at least
the two properties above. The basic idea to achieve them is
to split the whole recognition process into several times and
accumulate the recognition results and extracted features.

A problem here is whether the whole process of a character
recognition including preprocessing, feature extraction and
recognition step is splittable in a suitable way or not. It is
obvious that the process-wise approach, where a process (e.g.,
recognition) starts after the previous process (e.g., feature
extraction) completely finishes such like [4], does not resolve
the problem. That is, splitting each process is required. It is
noteworthy that calculating something (e.g., features) which is
not immediately used in the succeeding process (e.g., recog-
nition process) is inefficient for an anytime algorithm. Thus,
how to split the first process, i.e., feature extraction, is the key
issue. Figure 2 shows three representative feature extraction
approaches and their capability to split the process in three
ways. First of all, (a) is inappropriate because the recognition
results are expected to be given from everywhere in the query
image. By contrast, (b) and (c) are feasible because features are
extracted from all over the image. Now we compare the three
types of the character recognition methods. While texture-
based methods (e.g., [5]) and local feature-based methods can
be used to (b) and (c), connected components-based methods
(e.g., [4], [6]) cannot be used to all the splitting methods. The
reason is that the stability of connected components decreases
when the characters get blurred in the pyramid in (b) or some
parts of a character are missing in (c). In this paper, we select
(c) as the splitting method as a trial because of the simple
implementation. Besides, we use local features because the
thinning process can be performed per pixel.

$
�
	
�� %����

� � �

� � �

���&������

�

�

Fig. 3. An overview of the character recognition method using arrangements
of local features. First, the extracted features from the query image are matched
with those of reference images. Then the character region is projected to the
query image by using the affine transformation matrix calculated from the
arrangement of matched local features.

Another question is whether unreliable recognition results
should be output. One may think that the results should be
given regardless of the reliability at the time and their quality
should be improved later. However, this reduces precision of
the results which is important in the scene character recog-
nition task. Thus we try to keep the precision rate as high
as possible by using a reliability check for the recognized
characters.

III. CHARACTER RECOGNITION METHOD USING LOCAL

FEATURES

In this section, we introduce our conventional character
recognition method using arrangements of local features [1].
Figure 3 shows an overview of the method. The recognition
process is mainly divided into three steps: feature extraction,
feature matching, and character detection and recognition. We
describe the detail of each step below.

In the feature extraction step, we use ASIFT [2] in order
to detect feature points and describe feature vectors from a
query image. ASIFT is an affine-invariant version of SIFT [7]
and the features are robust to perspective distortions. Then,
each feature vector in the query image is matched with feature
vectors in the database. The database contains local features
extracted from reference images. The pair with the shortest
distance is regarded as corresponding. Here we use a fast
approximate nearest neighbor search method called BDH [8].
After the process, each corresponding feature point in the
query image is given the class label of the corresponding fea-
ture point in the database. The last step is character detection
and recognition. The positions of the matched feature points
are used to recognize characters. We use an assumption that
each character region in the query image has a certain amount
of corresponding feature points. Therefore, we search for such
a region by looking into a close region around each feature
point. However, this process cannot estimate the exact position
of characters when same characters are printed adjacently in
an image. Thus we use the arrangements of matched feature
points in order to detect the exact region of each character. An
affine transformation matrix is calculated from the positions
of three pairs of feature points. By projecting the reference
character region to the query image with the matrix, the
exact region of the character is detected. In the process, the

1173

'���
� �

�

! �

�
�

�
��

!

!

' �'
�
����� ���� �	�� �� ���� ������� ����

'���'���

Fig. 4. An overview of the proposed method. The feature extraction step is
split into N2 times and features, represented by arrows, are extracted from
different pixels in each step. The recognition results and the features are
accumulated through the process. In this figure N = 2.

detection accuracy is improved by applying RANSAC [9]
to the feature points in the character region. It randomly
selects three pairs of corresponding features to compute an
affine transformation matrix. The process is repeated R times
and the best matrix is selected. Increase of R improves the
recognition accuracy. Since RANSAC reduces the probability
of misdetection, we can treat the character which passes
through the process. Finally, each recognized character has a
score based on the confidence ratio to the recognition result.
The score is calculated by

Score =
mp√
rp

, (1)

where mp is the number of feature points inside the character
region which has the corresponding character label. rp is the
number of feature points in the reference image of the char-
acter class.

√
rp is used to normalize the difference between

the number of feature points extracted from each reference
character. In case several characters are recognized in almost
same region, we group the characters and the one with the
highest score is chosen as the recognition result.

IV. PROPOSED METHOD

In this section, we introduce the proposed method based on
the character recognition method presented in Sec. 3. Figure 4
shows an outline of the proposed method. The main idea is to
split the recognition process into several times and accumulate
the recognition results and extracted features. We describe the
detail of the proposed method below.

Given a query image, the proposed method splits the
image into a number of cells. The feature extraction step is
split into N2 times and features are extracted from different
pixels in each step. Thus the recognition accuracy and the
processing time for each step are changed by the number of N .
By accumulating the recognition results through the process,
the recognized characters basically increase as the processing
time increases. Theoretically the recognition accuracy reaches
to the same recognition accuracy. In order to reduce the
computational cost, we introduce several ideas to the process.
The first is to skip the recognition process on the character
regions which are already recognized in the previous steps.
Through the process, accumulated local features increase and
the computational cost also increases. We can reduce the
computational cost with the skipping. In order to skip only
the characters recognized with a high confidence, we set a

threshold T for the score given by Eq. (1). If the calculated
score is lower than T , the recognition process is not skipped
in the region.

V. EXPERIMENT

In this section, we show the experimental results. In order
to evaluate the effectiveness of the proposed method, we com-
pared the recognition accuracy and the processing time with
the conventional method [1]. The conventional and proposed
methods shared two parameters of BDH and R, which were
determined based on preliminary experiments. R was set to
be 25 for both methods. In addition, T was set to be 0.3 for
the proposed method. In the experiments, we employed 71
categories of Hiragana, 71 categories of Katakana and 1,945
categories of Kanji (Chinese character) in MS Gothic font
for reference characters with the same condition as [1]. The
resolution of the camera used in the experiments was 640 ×
480. All experiments were performed on a computer with Intel
Core i7 3.50GHz CPU and 8GB memory. We prepared 4 query
images for each character category: 2 different set of characters
were put on 2 different backgrounds. Figure 5 shows some
examples of the queries. The size of characters varied from 50
to 150 pixels for each side of a square bounding box.

Figure 6 shows some recognition results of the proposed
method. As already discussed in [1], the recognition accuracy
basically depends on the complexity of character shapes. Many
local features are extracted from complex shapes of Kanji
characters, which contributed to achieve high recognition ac-
curacy. Figure 7 shows the recall, precision and F-measure for
each character category. The results for each character category
were averaged over the different 4 types of the query images.
As shown in Fig. 7, the proposed method output recognition
results earlier than the conventional method, while the total
computational time of the proposed method increased. The
parameter of N = 2 performed best in the proposed method.
There are two reasons for this. With regard to computational
cost, obtaining recognition results takes a constant time. Thus
as N increases, it takes more time because the number of
recognition processes increases. With regard to recognition
performance, outputting the recognition result at an early stage
with a fewer number of local features is more risky than doing
it at a latter stage with a more number of local features. A
better rejection strategy may improve this.

Next, we consider the reason why the precision rate de-
creased in some parameters of the proposed method. There
are two main reasons. First, because some pairs of characters
in Hiragana and Katakana are very similar, such characters
were sometimes recognized as the wrong one. In the center of
Fig. 6 (b), a character “” was recognized wrongly as “”. Since
such pairs are quite difficult to distinguish, one solution is to
recognize them in the following process such as using contexts.
Another reason is related to the problem of such similar
characters to some extent. Some characters in a query image
were sometimes misrecognized in early steps. This problem
occurred many times when N = 3, 4 because the more we split
the feature extraction process, the less feature points we can
extract in early steps. The same problem occurred when some
parts of a character have a similar color with its background.
In the case, recognition results were sometimes given only
from the region that the contrast was high (e.g., a big brown

1174

(a) Hiragana1 (b) Hiragana3 (c) Katakana2 (d) Kanji3

Fig. 5. Some examples of the query images. 15 characters were put on each image. We prepared 2 different set of characters and 2 different backgrounds for
each character category.

(a) Hiragana3 (N=3)
Recall = 0.53 Precision = 1.00

(b) Katakana1 (N=2)
Recall = 0.60 Precision = 1.00

(c) Kanji1 (N=3)
Recall = 0.87 Precision = 1.00

(d) Kanji4 (N=4)
Recall = 0.87 Precision = 1.00

Fig. 6. Some recognition results of the proposed method. The results were given after N2 times of steps. Red rectangles represent a character region of each
recognized character and the recognition results are put on the center of each rectangle.

character in the middle of Figure 6 (c)). In order to solve this
problem, we need a better strategy to judge if a recognition
result is proper for the region or not.

VI. HOW TO SUPPORT VIDEO INPUT

Query images for the proposed methods are assumed to
be still character images. However, we have already realized
a system for video input. In this section we discuss what are
required for it while its details and evaluation will be presented
in another opportunity. An advantage of it is that many
varieties of local features can be extracted from each video
frame. Since stability of local features depends on noises and
illumination changes, extracting stable local features from only
one captured image is sometimes difficult. In particular, when
the characters in an image have simple shapes, the number of
stable features is quite few and recognizing such characters is
very severe. Thus we accumulate the local features extracted
from each frame in order to improve the recognition accuracy
for such characters. In video input, the position of characters
in each frame may gradually change and the position of
extracted feature points also change. Therefore we cannot
apply some functions of the proposed method presented in
Sec. 4 directly to the video input. In order to solve it, we
adjust several things of the method. First, we need to create
a Gaussian pyramid in each frame for the feature extraction
because the captured images vary in every frame. Besides,
when we split the feature extraction process into N2 times,
we have to take into account the order of pixels from which
local features are extracted because we preferably extract
local features evenly from each cell. Second, we require a
way to trace the movement of captured image sequence. We
achieved it by using the KLT tracker which is a fast and robust
tracking method [10]. It calculates a homography from the
previous frame to the current frame. We use the homography

to project and accumulate the recognized characters and the
local features at the correct positions. At last, unlike a still
image, the number of accumulated feature points increases
as we capture many video frames. Thus we set a lifetime to
each local feature to restrict the increase. The length of the
lifetime varies depending on the number of feature points each
reference character image has. Since characters with a simple
shape has less features compared with complex ones, the length
need to be longer. We confirmed the lifetime prevented the
computational time from increasing.

VII. CONCLUSION

Generally some characters in a query image are recognized
in a short time and some others take long. The difficult
characters usually make the processing time long while the
easy characters are recognized in a short time. The overall
processing time is determined by the difficult characters. In
this paper, we proposed a character recognition method which
recognizes each character with a proper cost. The idea to
realize it was to split the recognition process into several times
and accumulate the recognition results and features. Through
the process, easy characters are recognized early and the
difficult ones are recognized late. This is one of the desirable
properties of an anytime algorithm. We discussed how we
define the anytime algorithm for character recognition tasks
and how to realize it. As a result, we introduced a thinning-
based approach to a local feature-based feature extraction
method. We suggest that the proposed idea is applicable to not
only a local feature-based feature extraction method but also a
texture-based feature extraction method. In the experiment, we
confirmed the proposed method obtained recognition results of
easy characters earlier than the conventional method.

Our future work is to evaluate the performance of the pro-

1175

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

re
ca

ll

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(a) Hiragana

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

re
ca

ll

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(b) Katakana

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

re
ca

ll

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(c) Kanji

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

p
re

ci
si

o
n

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(d) Hiragana

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

p
re

ci
si

o
n

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(e) Katakana

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

p
re

ci
si

o
n

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(f) Kanji

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

F
-m

ea
su

re

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(g) Hiragana

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

F
-m

ea
su

re

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(h) Katakana

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

F
-m

ea
su

re

Total Processing Time[s]

 Conventional
N=2
N=3
N=4

(i) Kanji

Fig. 7. Relationships between the computational time and recall (top), precision (middle) and F-measure (bottom) for each character category.

posed method with video input. It helps us recognize difficult
characters by accumulating stable local features extracted from
each video frame.

ACKNOWLEDGMENT

This work was supported in part by JST CREST project
and JSPS KAKENHI Grant Number 25240028.

REFERENCES

[1] M. Iwamura, T. Kobayashi, and K. Kise, “Recognition of multiple
characters in a scene image using arrangement of local features,” Proc.
ICDAR, pp. 1409–1413, 2011.

[2] J. Morel and G.Yu, “ASIFT: A new framework for fully affine invariant
image comparison.” SIAM Jour. on Imaging Sciences, vol. 2, 2009.

[3] S. Zilberstein, “Using anytime algorithms in intelligent systems,” AI
magazine, vol. 17, no. 3, pp. 73–83, 1996.

[4] L. Neumann and J. Matas, “Real-time scene text localization and
recognition,” in Proc. CVPR, 2012.

[5] J.-J. Lee, P.-H. Lee, S.-W. Lee, A. L. Yuille, and C. Koch, “Adaboost
for text detection in natural scene,” in Proc. ICDAR, 2011, pp. 429–434.

[6] C. Yao, Z. Tu, and Y. Ma, “Detecting texts of arbitrary orientations in
natural images,” in Proc. CVPR, 2012.

[7] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[8] T. Sato, M. Iwamura, and K. Kise, “Fast and memory efficient approx-
imate nearest neighbor search with distance estimation based on space
indexing,” IEICE Technical Report, PRMU2012-142, 2013, in Japanese.

[9] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
1981.

[10] J. Shi and C. Tomasi, “Good features to track,” Proc. CVPR, pp. 593–
600, 1994.

1176

