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Abstract—Concerning camera-captured Japanese character
recognition, we have proposed a method to recognize characters,
both simple and complex, that may not be linearly aligned
and may be printed with a complex background. Recognition
is performed based on local features and their arrangement. The
arrangement is validated with an algorithm called local RANSAC.
However, at least four corresponding local features are required.
To relax that condition, we propose a new recognition method
making it possible to recognize a character region with at least
three corresponding local features. This method enables recall
and precision to be improved with the simpler characters using
more corresponding local features and computation times to be
reduced by 7%.

Keywords—scene character recognition; local feature;
RANSAC; reference point; affine transformation matrix;

I. INTRODUCTION

Recognizing characters in a scene is a challenging and
unsolved problem. To pursue better performance, much effort
including competitions (e.g., [1]–[3]) and research (e.g., [4]–
[12]) has been spent. With some exceptions (e.g., [3], [8]–
[12]), most research is focused on Latin characters. Characters
in other languages are usually more complex and have a
different set of difficulties.

We address the problem of recognizing Japanese charac-
ters, including complex characters such as Kanji (Chinese char-
acters), that may not be linearly aligned and may be printed
with complex backgrounds. The solution proposed is based on
local features (e.g., SIFT [13]) and their arrangement [11].
The idea is that if the arrangement of local features in a
region of the query image corresponds to the arrangement of
a reference character image, it is probable that the reference
character exists in that region. The correspondence is validated
using an affine transformation matrix (ATM) that projects the
region of the query image onto a reference image. In [11], the
ATM is estimated using the local RANSAC method proposed
in the paper. Three or more corresponding local features are
required for the estimation and at least one corresponding local
feature is required to validate the estimated ATM. Hence, in
total, at least four are required for this strategy. However, for
simpler characters, such as Hiragana and Katakana, only a
limited number, sometimes less than four, of local features are
obtained, thereby preventing these characters to be recognized.

To relax the condition, we propose an alternative method
making it possible to recognize a character region with at least
three corresponding local features. Specifically, a reference
point (RP) [14] is introduced to estimate the center of a charac-
ter region in the query image and four parameters of the ATM

in a step-by-step manner. Our method also enables recall and
precision of the simpler characters to be improved using more
corresponding local features; precision is thereby enhanced by
about 20% with the same recall. As a consequence, the method
also reduces computation times by 7% on average.

II. RELATED WORK

Existing scene character recognition methods are classified
into three approaches, termed texture based (sliding window
based), connected components based, and local feature based.
Although the first two approaches are actively researched, the
third has received little attention.

Compared with the methods used in the other two ap-
proaches, executing the methods used in the local feature based
approach takes time, especially in feature extraction, even if
the features are good. Nevertheless, they work on a severe
environment, such as in complex layouts and backgrounds.
To compensate for the computation time spent in the process,
we introduced the notion of the anytime algorithm into scene
character recognition [12]; the idea is that among characters
in the query image, easily recognized characters are outputted
earlier and the more difficult ones later. This is achieved by
extracting local features in a step-by-step manner. Whereas
the local RANSAC was used in [12], it is replaced with the
proposed method to exploit advantages that we shall discuss
below.

In creating a large dataset, we had already introduced the
RP in scene character recognition in the task of automatic
labeling [15]. In that work, however, there was no need to
take the number of correspondences into account because
a sufficient number of densely sampled local features were
available. In addition, instead of an affine transformation, a
similarity transformation was assumed. Thus, the contents in
the current paper is not trivial but sufficiently novel.

III. RECOGNITION METHOD USING LOCAL RANSAC

In this section, we review the conventional method using
local RANSAC [11]. Figure 1 shows an overview of the
strategy. It is based on local features and their arrangement,
which are often used in object recognition. The idea is that
if local features are located in the query image in the same
arrangement as those in a reference image, the character of
the reference image should be found within the region of the
query image. The arrangement of the features is confirmed
using the local RANSAC algorithm, which is a variant of the
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Figure 1: Overview of the conventional method [11]. Red
points represent local features extracted and green lines indi-
cate correspondences of features to reference images. Recog-
nition results (characters and their bounding boxes) are deter-
mined at the same time based on correspondences of local
features and their arrangement. Many correspondences are
omitted for better clarity.

RANSAC algorithm [16], where the RANSAC algorithm is
applied to a local region.

The recognition process consists of three steps: feature ex-
traction, feature matching, and character detection and recog-
nition. We explain each step in greater detail.

A. Feature extraction and matching

In feature extraction, we employ the SIFT algorithm [13]
to detect and describe local features. SIFT features are known
to be similarity invariant and robust to affine transformation.

In the feature matching step, each feature vector in the
query image (hereafter called the query feature vector or
query feature) is paired with one in the database that is the
closest match in the feature space. For a fast look-up of the
corresponding feature vectors, we employed bucket-distance
hashing, a state-of-the-art approximate-nearest neighbor search
method [17].

B. Character detection and recognition

Character detection and recognition is processed as follows.
First, a reference image is selected. Only the query feature
vectors paired with the feature vectors of the selected reference
image are prepared. Second, a query feature vector is selected.
Then, the local RANSAC algorithm is applied to a local region
which is the surrounding region (a circular region of radius 100
pixels is used in this paper) of the selected feature vector. This
procedure is carried out for all query feature vectors and all
reference images.

We briefly describe the recognition strategy with the local
RANSAC algorithm. In the first step, an ATM (hypothesis)
is estimated using three correspondences randomly selected in
the local region. In the second step, the estimated parameters
are validated; a number e of correspondences are used to
evaluate the estimated parameters. The evaluation criteria are n
hypothetical inliers; a hypothetical inlier is a correspondence
whose distance between a query feature projected to the refer-
ence image using the ATM and the corresponding feature in the
reference image is smaller than a predetermined threshold t.

The process is repeated r times, and the best ATM that realizes
the largest number for n is selected. Increasing r improves the
recognition accuracy. A character region that is estimated using
the ATM and passes the evaluation is regarded as a character
candidate.

Finally, each character candidate is evaluated based on a
score that yields a confidence value. The score is calculated
by

score = 100
mp√
Np

, (1)

where mp is the number of corresponding feature points
inside the character region, and Np is the number of feature
points in the corresponding reference image.

√
Np is used to

normalize the difference between the number of feature points
extracted from each reference character. If the score is larger
than a predetermined threshold T , the character candidate is
outputted. In the event that several characters are outputted in
almost the same region, we group the characters and the one
with the highest score is chosen as the recognition result.

IV. PROPOSED METHOD

In the character detection and recognition step of the
conventional method, the local RANSAC algorithm is used.
We describe its replacement next.

A. Affine transformation matrix

An affine transformation maps a point (x, y) in a plane
onto another point (x′, y′) in the same plane, given by(

x′
y′

)
= M(a, b, c, d)

(
x
y

)
+

(
e
f

)
, (2)

where

M(a, b, c, d) =

(
a b
c d

)
(3)

is a 2×2 matrix representing four independent transformations,

and

(
e
f

)
is a column vector representing a translation. The

four independent transformations are scalings

L(β) =

(
β 0
0 β

)
, (4)

rotations

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (5)

independent scalings

A(α) =

(
α 0
0 1/α

)
(6)

and shear

S(φ) =

(
1 tanφ
0 1

)
. (7)

In general, M(a, b, c, d) can be decomposed as matrix product

M(a, b, c, d) = S(φ)A(α)R(θ)L(β). (8)
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Figure 2: Determining the reference point (RP).

As an affine transformation is described by six parameters,
it is determined from at least three corresponding points.
We present two methods to estimate the translation and four
independent transformations from three or more corresponding
points. To avoid adverse effects from outliers in both methods,
we use a robust estimator median instead of the mean.

B. Reference Point

We present a method to estimate the translation vector of
the affine map. Figure 2 illustrates how the RP is determined.
The RP (orange circle) is centered with each reference image.
In the training phase, relative positions (blue arrows) from the
feature points (red circles) to the RP are calculated for each
reference image. In the recognition phase, the features in a
query image are paired with those of a reference image. The
relative positions to the RP are used to estimate the RP in
the query image. If the features are correctly extracted and
matched, the estimated RPs are clustered. We define R as the
radius of the cluster. In such cases, the medians of the x- and
y-coordinates of the estimated RPs in the query image are
used as the estimate of the center. The RPs laying outside the
clusters are discarded because they are regarded as having low
reliability.

C. Estimation of the four independent transformations

Having determined the center of a character region in the
query image, we need at least two correspondences to estimate
the four independent transformations. However, it is accepted
that more correspondences help obtain a better estimate.
Hence, we present a method of estimating the transformations
using not just two but more corresponding points. We use the
decomposition given in Eq. (8) and estimate the parameters in
the following way.

Scale: Scale β is estimated from the ratio of two corresponding
distances between the center and a point. We take the median
of the ratios.

Rotation: Rotation angle θ is estimated from the differences
in two corresponding angles between the x-axis and a point
assuming the center as origin. The median of the differences
gives the rotation angle. However, taking the median of
rotation angle is problematic because no boundary exists in
the angle space. Hence, we employ a two-stage approach.
First, to determine the boundary, we take the mean in the
vector space; each angle is represented by a vector (i.e.,
(cos θi, sin θi)); therefore the mean angle is calculated using
arctan ((

∑
i sin θi)/(

∑
i cos θi)). Then, we can safely deter-

mine the boundary; for example, if the mean angle is 60 deg.,

the boundary is set at 240 deg. (-120 deg. on the other side).
Finally, expanding the angle space, we take the median.

Independent scaling: The parameter α of independent scaling
is estimated similarly to scaling. The difference is that the
distances are calculated horizontally and vertically separately;
the ratio of the horizontal and vertical distances gives α.

Shear: Shear maps a point (x, y) onto another point (x′, y′)
given by (

x′
y′

)
= S(φ)

(
x
y

)
=

(
x+ y tanφ

y

)
. (9)

Then, taking the difference between initial and final vectors,
we can obtain (

x′
y′

)
−

(
x
y

)
=

(
y tanφ

0

)
. (10)

Hence, (x′ − x)/y gives an estimate of tanφ. We take the
median of the value.

The four transformations are estimated and rectified one
by one in the order specified in Eq. (8). However, there is
an exception; scaling and rotation are independent of each
other (as their matrices commute) and hence can be estimated
simultaneously.

V. EXPERIMENTS

Before performing experiments, we have to prepare the
query images. In this experiment, we used character sets in
MS Gothic font. Because there is no appropriate dataset,
we created one for our study. As the cost of collecting a
large number of labeled data is expensive, we attempted to
create a dataset semi-automatically. First we prepared source
images with different characters and backgrounds; class labels
and exact positions of the characters are ground-truthed. We
printed it out and took pictures in various orientations. We
then calculated a perspective transformation matrix between
the source image and the pictures using five points estimated
from the positions of the symbols used in the QR code, as
shown in Figure 3. Telling more detail, although using just four
symbols is sufficient to calculate the matrix, the other symbol
is used to identify the corresponding symbols. By using the
symbols, we can correctly calculate the transformation matrix
because it is easy to recognize the symbols and obtain the
locations. The symbols are used only to create ground truths
and not used for character recognition.

In the experiments, we employed as reference data 2458
images of Hiragana, Katakana and Kanji characters in MS
Gothic font. We prepared 120 query images composed of
two types of background, and two sets of characters from the
three scripts. Figure 3 shows some examples of queries. The
resolution of the camera was 1600 × 1200. All experiments
were performed on a computer with Opteron 2.60GHz CPU
and 512GB memory. Each program was executed as a single
thread on a single core. Hereafter, the conventional method
and the proposed method are referred to as RANSAC and RP,
respectively.

Figure 4 shows some recognition results obtained using the
proposed method with the best parameters shown in Table I. As
already discussed in [11], [12], recognition accuracy depended
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(a) Hiragana (1-1) (b) Katakana (4-3) (c) Kanji (5-5) (d) Kanji (8-7)

Figure 3: Some examples of query images. Fifteen characters were placed on each image. We prepared two different sets of
characters and two different backgrounds for each character type. The template ID (left) and photo ID (right) are given in
parentheses after the character type.

(a) Hiragana (1-1)
Recall=0.667, Precision=1.000

(b) Katakana (4-2)
Recall=0.667, Precision=0.909

(c) Kanji (5-3)
Recall=0.933, Precision=0.933

(d) Kanji (8-4)
Recall=0.800, Precision=1.000

Figure 4: Some recognition results obtained using the proposed method. A red frame encloses the character region of each
recognized character and the recognition result is centered within the frame.

TABLE I: Best parameters used in the experiments of Figures 4
and 5. These parameters were experimentally found using the
highest F-measure criterion.

N T t r R
Local RANSAC (Conventional method) 5

75
3 50 -

Reference Point (Proposed method) 3 10 - 10

on the number of features obtained from characters in query
images; this is related to the complexity of character shapes.
The trend was that less features were obtained from simple
characters and more features were obtained from a complex
character. The complex shape of Kanji characters in the query
image contributed to high recall/precision because many local
features can be extracted from them.

Figure 5 shows the relationship between recall and pre-
cision in RANSAC and RP. The same parameters were used
in Figure 4 except that t was changed from 2 to 30. With
threshold values given by N = n + 3, from 3 to 7 were
used in RP, and from 4 to 7 were used in RANSAC. The
figure shows that the precision for Hiragana and Katakana was
higher in RP than in RANSAC. Figures 5(a) through 5(d) show
the relationships between recall and precision for Hiragana
and Katakana characters. For Hiragana, with recall of 0.45,
precision was improved from 0.75 to 0.96; for Katakana, with
recall of 0.35, precision was improved from 0.63 to 0.88.
Comparing with RANSAC and RP for the same parameters,
RP obtained better results in the F-measure criterion. That is to

TABLE II: Recall and precision when T = 0 was used and N
was changed in the proposed method (RP).

Recall Precision

N Hiragana Katakana kanji Hiragana Katakana Kanji

3 0.56 0.53 0.88 0.49 0.41 0.59

4 0.51 0.45 0.86 0.65 0.54 0.72

say, an ATM estimated using RP exhibited better performance
than that using RANSAC. Figures 5(e) and 5(f) show the
relationships between recall and precision for Kanji. For Kanji,
there is no big difference between the two methods. The
inference is that many features can be extracted from Kanji
characters thereby improving the estimates of the ATM with
RANSAC; the probability of obtaining a good ATM is high
if there are plenty of available features to calculate the ATM
with RANSAC. Overall, these results indicate that with better
estimates of ATMs our proposed method performs character
recognition better in comparison with the conventional method.

Table II shows the recall and precision when T = 0. A
low value of T means that those recognized characters with
low reliability are not filtered out. This can lead to an increase
in character misrecognition. In this case, we found that RP
with N = 3 does improve recall compared with N = 4 over
all scripts. However, there was a side effect in that precision
decreased significantly. Hence, we used a value T = 75 in the
above experiments.
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Figure 6: Relationship between processing time and recall.

TABLE III: Computation time (s).

Feature Feature Character detection
Totalextraction matching and recognition

Local RANSAC
0.15 2.24(Conventional method)

2.06 0.031Reference Point
0.004 2.10(Proposed method)

Figure 6 shows the relationship between computation time
and recall in character detection and recognition. We varied
r from 1 to 50. The figure shows that RANSAC took more
computation time than RP to achieve results in the same recall
for all scripts. This is because RP is based on clusters; there is
no need to explore query features to estimate good parameters.

Table III shows average computation times for both con-
ventional and proposed methods in each process as well as
the total. In particular, the computation time for character
detection and recognition was reduced from 0.15s to 0.004s.
The average total computation time was reduced from 2.24s
to 2.10s representing a reduction of 7% in computation time.

VI. CONCLUSION

We focused on improving recognition performance in the
task of camera-captured Japanese character recognition. We
tackled the problem of recognizing both simple and complex
Japanese characters that may not be linearly aligned line
and may be printed with complex backgrounds. We proposed
a method using local features and their arrangement. The
arrangement was validated with the local RANSAC algorithm.
However, this method requires at least four corresponding
local features. To relax the condition, we proposed a new
recognition method making it possible to recognize a character
region with at least three corresponding local features. This
method also helped in improving recall and precision of
simpler characters using more corresponding local features and
in reducing computation times.

Experimental results showed that we succeeded in im-
proving precision of Hiragana and Katakana characters; for
Hiragana, when recall was 0.45, precision was improved from
0.75 to 0.96; for Katakana, when recall was 0.35, precision was
improved from 0.63 to 0.88. In addition, computation times in

character detection and recognition was reduced from 0.15s to
0.004s, and the average computation time in total was reduced
7% from 2.24s to 2.10s.

For the future, we plan to unify the proposed method
with the anytime algorithm [12] and automatic database cre-
ation [15]. The proposed method is more effective when many
local features are used and would be suited for example in
performing dense sampling of local features or in application
to automatic database creation.
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Figure 5: Relationship between precision and recall of the conventional method (RANSAC) and the proposed method (RP). The
labels in the key legend of the scatter plots give the method and the value of the threshold N ; for example, “RP3” means the
RP method was used with N = 3. The images on the right side are enlarged ones of the corresponding ones on the left side.
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