
Leveraging Pyramidal Feature Hierarchy for 3D
Reconstruction

Fairuz Safwan Mahad1[0000−0003−3090−8442], Masakazu
Iwamura2[0000−0003−2508−2869], and Koichi Kise3[0000−0001−5779−6968]

1 Graduate School of Engineering, Osaka Prefecture University,
1-1 Gakuen-cho, Naka, Sakai, Osaka 599-8531, Japan

fsafwan88@gmail.com
2 Graduate School of Engineering, Osaka Prefecture University,

1-1 Gakuen-cho, Naka, Sakai, Osaka 599-8531, Japan
masa@cs.osakafu-u.ac.jp

3 Graduate School of Engineering, Osaka Prefecture University,
1-1 Gakuen-cho, Naka, Sakai, Osaka 599-8531, Japan

kise@cs.osakafu-u.ac.jp

Abstract. Most state-of-the-art 3D reconstruction methods with CNNs
have focused on completion and generalization of the reconstructed 3D
models. Although the reconstructed 3D models may look complete, mostly
lose out in detail causing a wider gap between the reconstructed 3D
model and the groundtruth. We propose a method that adapts a pyra-
midal hierarchical-based network. Our strategy is to focus on improving
the reconstruction of the detailed parts which comprise of thin and fine
parts of the 3D models. Improving the detailed parts of the 3D model
helps improve the accuracy and the overall shape of the 3D model result-
ing in a reconstructed 3D model which looks closer to the groundtruth.
The advantage of using a pyramidal hierarchical-based network is that it
builds a feature pyramid which considers high-level semantics at differ-
ent scales. This builds a network that is tailored to focus on the detailed
parts of the 3D model while considering the overall shape of the 3D
model.

Keywords: Computer vision · 3D reconstruction · Deep learning.

1 Introduction

3D reconstruction is an ill-posed problem which researchers have addressed for
decades. The goal of 3D reconstruction is to reconstruct a 3D model from a
given input. Ideally, the reconstructed 3D model has to look exactly the same
as the input. However, this is far from easy to achieve as there are various
challenges to overcome in 3D reconstruction. Conventional methods such as [7,
28, 32] reconstruct 3D models based on feature point correspondences. However,
these methods are ineffective if there is a large baseline between viewpoints
which makes finding feature point correspondences even more challenging or in
the worst case, it fails. A typical solution is to acquire more viewpoints but this
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Fig. 1. Reconstructed 3D models of our proposed method and [33] from 20 depth
map images with different viewpoints. (a) groundtruth. (b) Our results. (c) Soltani et
al. [33].

is not always convenient in most cases. Other disadvantages include occlusion
and error in point correspondences.

In recent years, researches such as [4, 6, 14, 26, 12, 35, 34, 30, 36, 16, 15, 13, 18,
29] have started utilizing convolutional neural networks (CNNs) to reconstruct
3D models and have achieved considerable success. Unlike the conventional meth-
ods, CNNs-based methods do not require any feature point correspondences
which conveniently overcomes one of the main problems in the conventional
methods. However, these methods focus on the completion and generalization
of the 3D models. The reconstructed 3D model often suffers from the loss in
detail and resolution. Methods such as [20, 33] have focused on achieving high
resolution 3D models. Despite the high resolution 3D reconstructed models, they
suffer from the loss in details as shown in Fig. 1(c). The mentioned detailed parts
refer to the fine parts of the 3D models such as the stand of a lamp, the tip of
a rifle, the stand of a chair or table. We saw a niche in further enhancing the
quality of the reconstructed 3D model by focusing on the reconstruction of the
detailed parts.

In this paper, we propose a simple yet effective way to further enhance the
quality of the reconstructed models. Our network architecture is based on a pyra-
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Fig. 2. Network architecture of Lin et al. [21].

midal hierarchical-based network concept shown in Fig. 2 from [21]. [21] builds
a multi-scale feature map where each feature map is made up of high-level se-
mantic features with different spatial resolution. By leveraging the semantically
strong features extracted at different levels, the reconstruction quality of the
detailed parts of the 3D model can be further improved. [21] is actually designed
for object detection but with a slight improvement we demonstrate that it is able
to extract useful features at different scales with the purpose of enhancing the
quality of the reconstructed 3D model as shown in Fig. 1. Our proposed method
is an improved implementation of [33].

Our contributions are listed as follows:

– Implements a pyramidal hierarchical-based network in encoder
– Improves reconstruction of detailed parts which comprise of thin and fine

parts of the 3D model
– Improves the overall shape and accuracy of the 3D reconstructed models

2 Related work

2.1 Single-view and Multi-view 3D Reconstruction Networks

3D reconstruction methods can be categorized in either single-view or multi-
view. In a single-view 3D reconstruction method [6, 35, 34, 20, 30, 36, 16, 15, 13,
18, 29], a single image is required as input in order to reconstruct a 3D model.
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A single image is easily obtainable and can be convenient in certain cases. How-
ever, there are several downsides to it. A single-view 3D reconstruction is an
ill-pose problem. Since only a single viewpoint is fed as input to the network,
the network will estimate the unseen viewpoints of the object. In most cases,
this produce a wider dissimilarity gap between the groundtruth and the recon-
structed 3D model. Furthermore, apart from relying heavily on how well the
network is trained, the reconstructed 3D model is also reliant on the angle of the
single viewpoint that is fed as input to the network. This shows that a 3D model
reconstructed from a single-view is more prone to suffer from loss in detail and
low accuracy.

Multi-view 3D reconstruction methods however, involves two or more view-
points. Unlike a single image, more viewpoints provide more information of the
object which in turn produces a reconstructed 3D model with better accuracy.
[14, 12] have proposed 3D reconstruction methods which reconstruct 3D models
in a rasterized form which is in voxel. Voxels are basically an extended form of
2D pixels which are used to represent pixels in 3D. Voxels are easily integrated
in CNN. However, it is not efficient due to its high memory consumption. On
the contrary, [33] have proposed a method that reconstruct 3D models in a geo-
metric form, point clouds. Despite its high resolution reconstructed 3D model, it
focused on completion and generalization which in most cases failed in capturing
the detailed parts of the objects.

2.2 Pyramidal-based Networks

Exploiting features extracted from different layers or in other words, multi-scale
layers have been practiced since the early days of neural networks. This technique
is especially common in addressing issues such as detection and segmentation.
Methods such as [24, 9, 23, 31, 27, 8] focused on segmentation while [19, 1, 2, 22,
11] focused on detection. There are also other method such as [25] that deals
with pose estimation. Methods such as [31, 27, 11, 25, 8] have progressed even
further by implementing skip connections that connects features from previous
layers to current layers which achieved promising results. Although all of these
methods adopt pyramidal-based architectures, [21] in particular stood out from
the rest as predictions are made independently at all levels.

3 Approach

Our proposed method is an improved implementation of Soltani et al. [33]. [33]
is a 3D shape synthesizing network that estimates a set of depth map and sil-
houettes. The network is trained from a collection of depth map images ren-
dered from the ShapeNet dataset [3] using 20 pre-defined camera positions. The
method takes in either 20 depth map or 20 silhouette images as input. It out-
puts the same number of depth map and silhouette images which amounts to a
total of 40 output images. These output images are used to obtain a final 3D
reconstructed model. In order to do so, each output depth map image is used to
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Fig. 3. Network architecture of Soltani et al. [33].

generate a group of point clouds. Accumulating all the groups of point clouds
forms an initial 3D model. The output silhouette images are used to further re-
fine the initial 3D model by removing noisy points which ends up creating a final
reconstructed 3D model with high resolution. Furthermore, [33] can be trained
in three different ways. It can work with 20 views, a single view or 20 views with
15 to 18 of them being randomly zero out. However, the trained network cannot
work with all of the three settings simultaneously. It can only be trained on any
one of the three settings at a time. In other words, one would need to train three
different networks in order to work with all three settings. In this paper, we will
only train our network on the first setting which is working with 20 views. An
overview of the network architecture of [33] is shown in Fig. 3. It implements
a deep generative network, Variational Autoencoder (VAE) [17]. Both the en-
coder and decoder are made up of ResNet blocks [10]. Although it is able to
reconstruct a high resolution 3D model, the network is designed for completion
and generalization. It learns single-scaled features. Following the nature of the
network, most of the detailed parts are being left out and not reconstructed.

Our goal is to further enhance the quality of the reconstructed 3D model.
In order to do so, our strategy is to focus more on capturing features at tight
spots such as small and thin parts of the object. This improves the quality of
the reconstructed 3D model hence improving its accuracy. For this purpose, we
implemented the multi-scale layered network with skip connections from [21] as
shown in Fig. 2, in the encoder part of the VAE network structure used in [33].
According to [21], the multi-scale upsampled layers are made up of semantically
stronger features than the downsampled layers which is the main advantage of
using pyramidal-based networks. Fig. 2 shows that [21] utilizes every output level
{P1, P2, P3, P4} to make predictions independently. Our proposed network archi-
tecture shown in Fig. 4 adapts similar concept but with two distinct differences.
Firstly, [21] considers every output level {P1, P2, P3, P4} independently while our
proposed network concatenates the final feature maps {P2, P4} producing a final
merged feature map followed by a fully-connected layer. Secondly, our proposed
network is implemented in the encoder of a VAE structure.
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Fig. 4. Our proposed network architecture.

3.1 Network Architecture

Figure 4 shows the network architecture of our proposed method which we
adapted from [21]. It features bottom-up and top-down pathways with skip con-
nections. All blocks in both the bottom-up and top-down pathways are made up
of ResNet blocks [10]. The network starts with a bottom-up pathway by scaling
down the input image to feature maps of sizes {1102, 532, 252, 112, 42} which we
denote them as {C0, C1, C2, C3, C4} respectively. The bottom-up pathway ends
with C4 as its last layer.

The top-down pathway begins by first upsampling the last layer which is C4

back to a feature map of size 112. The layer C3 (which is of the same spatial
size as the upsampled layer from C4) from the bottom-up pathway is associated
with the upsampled layer with a 1x1 convolution. Similar to [21], the features
in the upsampled layer and the skip connection layer are then concatenated
which produce a feature map denoted as M3. The layer M3 goes through a
3x3 convolution which acts as an anti-aliasing measure to reduce the aliasing
effect caused by sampling the layers, producing a final feature map for this level
denoted as {P3}. This iterates until we have the final features maps denoted
as {P2, P3, P4}. It is to note that {P4} is the same layer as {C4}. Finally, we
concatenate the final feature maps {P2, P4} to produce a final merged feature
map denoted as {F0} followed by a fully connected layer. In order to concatenate
the final feature maps {P2} and {P4}, we had to further downsample the layer
{P2} in order to match the size of layer {P4}. We did not include {P3} in the
final merged feature map in order to reduce the number of parameters. The
same reason applies to not further upsampling the layer {P2} to spatial size
of {1102, 532}. Our proposed network architecture is implemented only in the
encoder of the VAE structure of [33]. We used the same decoder structure as
[33].
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The network in [33] can be trained either in an unsupervised manner or
conditionally. For our purpose, we will train our network using the unsupervised
method. Therefore, we use the same loss function as Equation (1) in [33].

4 Experiments

We evaluated our proposed method against Soltani et al. [33]. Similar to [33],
we trained our network using the ShapeNet dataset [3]. The ShapeNet dataset
consists of 57 object categories such as aeroplane, car, table, chair, vase. It
involved a total of 56,652 3D models. Each 3D model was first rendered into
20 depth map images with distinct views. All 3D models are rendered with the
same set of pre-defined camera angles. Each rendered depth map image was
of size 224 x 224. In order to evaluate our method against Soltani et al. [33],
we used the same dataset distribution as [33] which was 92.5% and 7.5% for
training and validation respectively. We also used their pre-trained model which
was used to produce the results in [33]. We present our results qualitatively and
quantitatively.

4.1 Qualitative Evaluation

In this section, we present our qualitative results. We reconstructed the 3D mod-
els from the test dataset and compared our results against the groundtruth and
Soltani et al. [33]. The reconstructed 3D models are all represented in point
cloud form and rendered using [5]. Figure 5 shows the results for several cat-
egories such as bench, car, guitar and table. The results in Fig. 5 show that
the proposed method is able reconstruct a denser model as compared to [33].
Furthermore, it is able to capture the overall shape of the 3D model better as
compared to [33]. These results in a 3D reconstructed model looking much closer
to the groundtruth. Apart from reconstructing parts that could not be recon-
structed by [33] such as in row 2 and 3 of Fig. 5, it can also be observed that our
proposed method is able to eliminate the incorrectly reconstructed parts such
as in the first row in Fig. 5. This proves that concatenating the multiple-level
features from the deepest layer (top-most layer of the pyramid) and the lowest
layer of the feature pyramid is effective in refining parts of the reconstructed 3D
model. The contributing factor lies in the multiple-level feature maps, {P2} and
{P4}, which have features from different levels. Concatenating features extracted
on different levels allows the network to learn both coarse and fine details of the
image.

However, our proposed method failed under certain circumstances. As shown
in Fig. 6, our proposed method could not cope with reconstructing 3D models
with complicated shapes. It especially did not work well for objects with uncom-
mon shapes such as in row 2 and 3. Our goal is to improve the reconstruction
of the fine parts of the 3D models. Therefore, although our results in Fig. 6 are
better shaped than Soltani et al. [33], they are still considered a failure as the
fine parts are not reconstructed.
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Fig. 5. Qualitative results depicting 3D reconstructed models for success cases. (a)
groundtruth. (b) Our results. (c) Soltani et al. [33].
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Fig. 6. Qualitative results depicting 3D reconstructed models for failure cases. (a)
groundtruth. (b) Our results. (c) Soltani et al. [33].
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4.2 Quantitative Evaluation

In this section, we compare our results against Soltani et al. [33] quantitatively.
We used the same evaluation metric as Soltani et al. [33] which is Intersection-
over-Union (IoU) in order to provide a fair comparison between the results of
ours and Soltani et al. [33]. The IoU is computed by converting the projected
point clouds from the estimated depth map into 3D voxels. As mentioned, the
ShapeNet dataset [3] involves 57 categories. All categories do not have an equal
distribution of the number of models. A category can have as many as over
500 models such as the table and car category while others can have as few as 2
models such as the birdhouse category. Due to the uneven distribution of models,
we provided a breakdown of the IoU for each category for both Soltani et al. [33]
and our results. We compare our results for epochs 80, 90 and 100. A random
seed is used which causes fluctuation in the values every time the depth map is
estimated from the model. Therefore, in order to provide a more insightful data,
we ran the depth map estimation 10 times for each epoch (epoch 80, 90 and
100) and calculated the mean from the 10 IoU values. Similarly, we calculated
the mean from the 10 IoU values category-wise. In addition, we calculated the
standard deviation for each category using the 10 IoU values obtained from the
10 separate depth map estimation. The average IoU obtained in [33] was 84.0
at epoch 80. In order to provide a fair comparison between ours and Soltani et
al. [33], similar to our experiment settings, we estimated the depth map using
the test dataset for 10 times using the pre-trained model provided by Soltani
et al. It is to be noted that the provided pre-trained model was the exact same
model used to produce the results in [33]. However, after estimating the depth
map for 10 times, we achieved an average IoU of 80.9, 81.1 and 81.0 for epoch
80, 90 and 100 respectively. The computed standard deviation for Soltani et
al. [33] shown in Table 1 proves that the difference is very minimal. Therefore,
we used these IoU values as our benchmark for Soltani et al. [33]. It can be seen
in Table 1 that our proposed method outperforms Soltani et al. [33] with an IoU
value of 81.5, 81.6 and 81.8 for epoch 80, 90 and 100 respectively. The values
in bold shown in Table 1 indicates that it is higher than its compared value for
each given category for the respective epoch. Both values are marked as bold if
they have the same IoU value. Breaking down the results in category-wise, our
proposed method outperforms Soltani et al. [33] in 40 categories for epoch 80,
41 categories for epoch 90 and 47 categories for epoch 100 out of 57 categories.

In Table 2, we compare our best performing model against Soltani et al. [33]
which is at epoch 100 and 90 respectively. Our proposed method gained an
average IoU of 0.7 over Soltani et al. [33] with 43 out of 57 categories falling in
our favour while achieving the same IoU values for three categories which are
bus, display and rifle. We observed that all eleven categories that we fell behind
all have less than 50 models each with only one category having 85 models.
These quantitative results show that our proposed method is able to improve
the reconstruction quality for majority of the categories. Our proposed method
is able improve the quality of the reconstruction while focusing on both shape
completion and also on the fine parts of the models. The improvement in IoU in
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Table 1. IoU comparison between [33] and ours. “#M” indicates #Model.

Category #M
Epoch 80 Epoch 90 Epoch 100

[33] Ours [33] Ours [33] Ours

aeroplane 304 72.3 ±0.001 72.8 ±0.002 72.4 ±0.001 72.7 ±0.001 72.2 ±0.001 73.2 ±0.001
bag 8 78.8 ±0.007 80.2 ±0.007 79.0 ±0.006 80.6 ±0.006 79.0 ±0.006 80.2 ±0.004
basket 11 84.0 ±0.007 85.3 ±0.007 83.8 ±0.005 85.1 ±0.006 83.8 ±0.006 85.3 ±0.005
bathtub 62 87.7 ±0.003 88.8 ±0.003 87.7 ±0.004 88.9 ±0.004 88.1 ±0.004 89.1 ±0.003
bed 10 75.6 ±0.009 78.5 ±0.007 76.0 ±0.006 78.9 ±0.005 75.9 ±0.005 79.2 ±0.004
bench 132 78.1 ±0.002 78.6 ±0.002 78.2 ±0.003 79.1 ±0.002 78.1 ±0.002 79.2 ±0.003
bicycle 6 43.6 ±0.013 43.5 ±0.013 43.2 ±0.01 42.5 ±0.012 43.2 ±0.011 43.8 ±0.01
birdhouse 2 81.4 ±0.033 86.6 ±0.03 83.7 ±0.033 87.6 ±0.018 82.9 ±0.021 88.6 ±0.027
bookshelf 39 73.3 ±0.003 75.8 ±0.006 73.7 ±0.008 75.8 ±0.006 73.8 ±0.007 76.2 ±0.003
bottle 35 92.5 ±0.003 92.6 ±0.003 92.7 ±0.002 92.9 ±0.003 92.7 ±0.002 92.8 ±0.002
bowl 13 93.6 ±0.004 93.7 ±0.006 93.5 ±0.004 94.1 ±0.005 93.8 ±0.005 94.2 ±0.006
bus 82 91.2 ±0.002 90.9 ±0.002 91.1 ±0.001 91.0 ±0.002 91.3 ±0.002 91.1 ±0.002
cabinet 115 90.7 ±0.001 91.6 ±0.002 90.8 ±0.002 91.2 ±0.002 90.9 ±0.002 91.6 ±0.002
camera 8 67.5 ±0.004 68.2 ±0.008 68.1 ±0.006 69.5 ±0.008 67.9 ±0.005 69.0 ±0.009
can 8 94.7 ±0.007 95.3 ±0.005 94.7 ±0.004 95.3 ±0.005 94.8 ±0.007 95.3 ±0.006
cap 3 79.2 ±0.01 77.1 ±0.02 81.0 ±0.018 77.2 ±0.027 78.6 ±0.011 77.9 ±0.01
car 554 82.6 ±0.001 82.7 ±0.001 82.5 ±0.001 82.7 ±0.001 82.7 ±0.001 82.8 ±0.001
cellphone 45 91.6 ±0.005 92.4 ±0.003 91.7 ±0.003 92.3 ±0.004 92.4 ±0.004 92.5 ±0.003
chair 491 77.5 ±0.001 78.2 ±0.001 77.7 ±0.001 78.4 ±0.001 77.5 ±0.001 78.7 ±0.001
clock 40 80.4 ±0.004 79.8 ±0.004 80.1 ±0.004 80.0 ±0.005 80.5 ±0.004 79.9 ±0.006
dishwasher 8 93.4 ±0.005 94.3 ±0.002 94.0 ±0.004 94.4 ±0.006 94.4 ±0.005 94.3 ±0.005
display 81 86.3 ±0.002 86.0 ±0.004 86.5 ±0.003 86.6 ±0.002 86.4 ±0.002 86.5 ±0.004
faucet 47 66.0 ±0.007 64.6 ±0.007 66.8 ±0.009 64.8 ±0.007 66.8 ±0.008 65.2 ±0.008
file cabinet 18 92.4 ±0.003 92.6 ±0.004 92.8 ±0.004 92.5 ±0.006 92.6 ±0.005 92.5 ±0.005
flowerpot 42 65.5 ±0.002 66.4 ±0.003 65.5 ±0.003 66.9 ±0.003 65.5 ±0.002 66.6 ±0.004
guitar 65 78.3 ±0.006 79.7 ±0.005 78.4 ±0.004 80.0 ±0.004 78.3 ±0.004 80.2 ±0.003
headphone 5 55.4 ±0.009 55.6 ±0.015 55.6 ±0.01 56.8 ±0.005 55.1 ±0.007 56.8 ±0.012
helmet 16 75.5 ±0.003 75.5 ±0.002 75.4 ±0.002 75.9 ±0.003 75.3 ±0.004 75.8 ±0.004
keyboard 5 87.9 ±0.013 87.3 ±0.007 87.8 ±0.009 87.5 ±0.009 88.1 ±0.01 88.2 ±0.008
knife 42 78.3 ±0.007 78.8 ±0.011 79.4 ±0.006 78.4 ±0.015 78.7 ±0.006 79.0 ±0.008
lamp 181 67.2 ±0.003 68.2 ±0.004 67.8 ±0.003 68.2 ±0.005 67.3 ±0.005 68.5 ±0.005
laptop 34 96.6 ±0.001 96.9 ±0.003 96.8 ±0.002 97.3 ±0.003 96.7 ±0.002 97.3 ±0.001
letterbox 7 70.1 ±0.011 68.2 ±0.01 70.1 ±0.007 68.3 ±0.06 69.8 ±0.013 68.1 ±0.009
microphone 6 62.1 ±0.007 65.2 ±0.053 62.8 ±0.008 64.0 ±0.033 62.5 ±0.008 63.0 ±0.009
microwave 11 93.8 ±0.003 93.2 ±0.006 93.6 ±0.003 93.7 ±0.003 93.4 ±0.004 93.5 ±0.004
motorcycle 28 75.4 ±0.004 75.0 ±0.004 75.4 ±0.003 75.0 ±0.003 75.0 ±0.006 75.3 ±0.003
mug 17 84.4 ±0.006 84.6 ±0.004 84.2 ±0.004 84.8 ±0.003 84.4 ±0.004 84.6 ±00.002
piano 13 79.4 ±0.003 80.3 ±0.005 79.4 ±0.004 80.6 ±0.005 79.2 ±0.005 80.8 ±0.007
pillow 6 86.9 ±0.012 87.8 ±0.014 86.9 ±0.009 88.3 ±0.009 86.7 ±0.01 88.8 ±0.013
pistol 19 84.4 ±0.007 85.3 ±0.008 84.7 ±0.006 85.5 ±0.004 84.5 ±0.006 85.6 ±0.007
printer 18 79.1 ±0.007 81.3 ±0.005 79.2 ±0.007 82.0 ±0.008 79.3 ±0.006 82.0 ±0.004
remote

control
4 90.9 ±0.009 92.3 ±0.005 89.4 ±0.268 92.3 ±0.012 91.0 ±0.006 92.0 ±0.005

rifle 171 77.5 ±0.003 77.5 ±0.003 77.6 ±0.003 77.2 ±0.003 77.2 ±0.003 77.6 ±0.003
rocket 7 72.4 ±0.01 73.1 ±0.011 73.2 ±0.012 72.3 ±0.012 71.8 ±0.015 72.8 ±0.011
ship 147 79.3 ±0.003 79.2 ±0.001 79.5 ±0.002 79.4 ±0.003 79.3 ±0.001 79.8 ±0.002
skateboard 18 78.9 ±0.017 80.5 ±0.013 80.7 ±0.009 80.4 ±0.012 80.0 ±0.013 80.9 ±0.009
sofa 242 87.2 ±0.001 87.3 ±0.001 87.1 ±0.001 87.3 ±0.001 87.1 ±0.001 87.6 ±0.001
speaker 121 84.1 ±0.003 84.3 ±0.002 84.1 ±0.002 84.2 ±0.002 84.0 ±0.002 84.3 ±0.002
stove 8 88.2 ±0.009 88.8 ±0.005 88.5 ±0.006 89.6 ±0.006 88.5 ±0.006 88.9 ±0.008
table 652 84.6 ±0.001 84.6 ±0.001 84.8 ±0.001 85.1 ±0.001 84.5 ±0.001 85.2 ±0.001
telephone 92 92.8 ±0.006 93.1 ±0.003 92.5 ±0.006 93.1 ±0.002 93.0 ±0.005 93.1 ±0.004
tower 12 76.3 ±0.005 74.8 ±0.006 76.4 ±0.006 75.5 ±0.005 76.5 ±0.007 75.9 ±0.005
train 25 84.2 ±0.005 85.0 ±0.005 84.0 ±0.005 84.7 ±0.003 84.3 ±0.007 85.1 ±0.005
trashcan 28 85.4 ±0.005 85.4 ±0.002 85.2 ±0.004 85.7 ±0.004 85.5 ±0.003 85.5 ±0.005
vase 38 82.0 ±0.004 83.2 ±0.004 82.4 ±0.004 83.5 ±0.002 82.1 ±0.004 83.7 ±0.003
vessel 85 81.0 ±0.002 80.5 ±0.003 81.1 ±0.003 80.4 ±0.002 81.2 ±0.002 80.8 ±0.003
washing

machine
17 93.0 ±0.002 93.2 ±0.003 92.4 ±0.277 93.2 ±0.003 93.0 ±0.003 93.3 ±0.003

Average 80.9 81.5 81.1 81.6 81.0 81.8
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categories such as chair, lamp and table as shown in Table 2 further supports
this claim. However, not all categories with fine parts excelled with our proposed
method. Our proposed method caused a decline in IoU values in categories such
as tower, motorcycle and faucet. This is due to the complex shapes that these
categories have. On top of the complexity of the shapes, these categories have
very few models for the network to train with which weakens the effectiveness
of the proposed method.

4.3 Conclusion

In order to improve the accuracy and overall shape of the 3D model, we focus
on reconstructing the detailed parts of the 3D models that most state-of-the-
art 3D reconstruction methods with CNNs have overlooked. We presented a
simple yet effective way to improve the quality of the reconstructed 3D model
by leveraging the advantage of a pyramidal hierarchical-based network. We show
that building a feature pyramid of high-level semantics with different scales and
concatenating the layers is able to reconstruct a denser 3D model while improving
the reconstruction of the detailed parts. We demonstrated that our proposed
method outperformed the state-of-the-art method in most categories and also
in terms of overall IoU. However, our proposed method is not fully able to cope
with the reconstruction of 3D models with uncommon and complex shapes.
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