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LETTER

Learning Pyramidal Feature Hierarchy for 3D Reconstruction

Fairuz Safwan MAHAD†a), Nonmember, Masakazu IWAMURA†b), Senior Member, and Koichi KISE†c), Fellow

SUMMARY Neural network-based three-dimensional (3D) reconstruc-
tion methods have produced promising results. However, they do not pay
particular attention to reconstructing detailed parts of objects. This occurs
because the network is not designed to capture the fine details of objects.
In this paper, we propose a network designed to capture both the coarse
and fine details of objects to improve the reconstruction of the fine parts of
objects.
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1. Introduction

Three-dimensional (3D) reconstruction using RGB images
has been widely researched in the computer vision commu-
nity. 3D reconstruction has a wide range of applications in
various fields, such as the medical sector [1], archaeolog-
ical sector [2], and civil engineering sector [3]–[5]. How-
ever, reconstructing a highly accurate 3D model remains
a challenging task, even with a state-of-the-art 3D recon-
struction method. Soltani et al. proposed a method to re-
construct a high-resolution 3D model that inputs multiple
depth maps or silhouettes [6], which has been shown to out-
perform other 3D reconstruction methods in terms of multi-
viewpoint cloud-based methods [7]. However, the method
ignores an important aspect, which is the reconstruction of
detailed parts of the 3D model. In most cases, the method
fails to reconstruct the fine parts of the 3D model, as shown
in Fig. 1. The fine parts are either slightly reconstructed
or not reconstructed at all. Slightly reconstructed means
that the reconstruction is incomplete or lacks density. The
method fails particularly in the reconstruction of fine parts,
such as the legs of a chair, and the grip and tip of a rifle.
Our research aims to improve the quality of 3D models,
specifically focusing on reconstructing detailed parts of 3D
models, which have been ignored by most 3D reconstruction
methods.

In this paper, we propose a simple but effective ap-
proach to improve the reconstruction of detailed parts of 3D
models using multiple viewpoints∗. Our proposed method
is based on a state-of-the-art method [6] and introduces
the pyramidal hierarchical-based network concept from [9],
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Fig. 1 Comparison of reconstructed 3D models using our proposed
method and that of Soltani et al. [6] (a) Ground truth. (b) Proposed method.
(c) Method of Soltani et al. [6]. Our method improved the reconstruction of
detailed parts using both local and generic features.

which was originally designed for object detection. In [9],
a multi-scale feature map was built, where each feature map
consisted of high-level semantic features with different spa-
tial resolutions. By leveraging semantically strong features
extracted at different levels, the reconstruction quality of de-
tailed parts of the 3D model was improved. We demon-
strate that the mechanism of the pyramidal hierarchical-
based network is effective in enhancing the quality of the
reconstructed 3D model, as shown in Fig. 1.

2. Approach

2.1 Soltani et al.’s Method [6]

Soltani et al. proposed a network that can run in three set-
tings. We used the simplest setting, in which the network
takes in 20 depth map images, and produces a set of 20 depth
map images and 20 silhouette images. The output from the
network, that is, a total of 40 images, is used to render the fi-
nal 3D model. The 20 depth map images are projected back
to 3D space to create an initial 3D model. The 3D model is
further refined using the silhouette images to filter outliers.

∗This approach is based on the method in [10].
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Fig. 2 Pipeline structure of the method proposed by Soltani et al. [6] nCh
denotes the number of channels (74). FC denotes the fully connected layer.
Z and C are the latent variable and a class label, respectively. C is not used
in this paper.

Fig. 3 Our proposed network architecture.

An overview of the pipeline proposed by Soltani et al.
is shown in Fig. 2. The core of its network structure is a
deep generative network and variational autoencoder (VAE)
for both its encoder and decoder, which results in a high-
resolution 3D model.

2.2 Proposed Method

Our proposed method is based on that of Soltani et al. Al-
though the method of Soltani et al. can reconstruct a high-
resolution 3D model, the network was designed to learn only
single-level features. Thus, most detailed parts are ignored
during reconstruction. To further enhance the quality of the
reconstructed 3D model, our strategy is to focus on captur-
ing features at tight spots, such as small and thin parts of the
object. This will improve the quality of the reconstructed
3D model. Thus, we implement a multi-scale layered net-
work with skip connections inspired by the method in [9] in
the encoder part of the VAE network structure used in [6].

According to Lin et al. [9], multi-scale upsampled lay-
ers consist of semantically stronger features than downsam-
pled layers, which is the main advantage of using pyramidal-
based networks. Our proposed network architecture is
shown in Fig. 3. It features bottom-up and top-down path-
ways with skip connections. The network starts with a
bottom-up pathway by scaling down the input image to fea-
ture maps of sizes {1102, 532, 252, 112, 42}, which are de-
noted by {C0,C1,C2,C3,C4}, respectively. The layers M3

and M2 are obtained by concatenating features from their re-
spective previous layer and the layer from the current level.
The final feature layers are denoted by {P2, P3, P4}. {P2, P4}
are concatenated to produce a final merged feature map de-
noted by {F0}. {P3} is not included to reduce the number of
parameters. The network in [6] can be trained either in an

unsupervised manner or conditionally. For our purpose, we
train our network using the unsupervised method. There-
fore, we use the same loss function as Eq. (1) in [6]. Our
proposed method adopts a similar concept to that in [9] with
two distinct differences:

1. Lin et al. [9] considered every output level {P1, P2, P3,
P4} independently, whereas in our proposed network,
we concatenate the final feature maps {P2, P4} to pro-
duce a final merged feature map followed by a fully
connected layer.

2. We implement our proposed network in the encoder of
the VAE structure.

3. Experiments

In this section, we evaluate our method against that of
Soltani et al. [6]. We obtained our results in both qualita-
tive and quantitative evaluations.

3.1 Experimental Settings

We trained our model on the ShapeNet dataset [8], which
consists of 57 object categories, with a total of 56,652 3D
models. To use the dataset for training, we rendered depth
maps from all 3D models in the dataset using fixed cam-
era angles. The rendered size was 224 × 224 pixels. To
evaluate our method against that in [6], we used the same
dataset distribution as [6], which was 92.5% for training and
the remaining 7.5% for validation. We used the pre-trained
dataset, which was the same model used to produce the re-
sults in [6], along with the authors’ original source code. We
trained our model on an NVIDIA GeForce GTX TITAN V.

3.2 Qualitative Evaluation

Figure 4 shows our results against those of the method of
Soltani et al. [6]. We reconstructed the 3D models using the
7.5% test dataset that was set aside. We observed two main
points in Fig. 4. First, our method captured the overall shape
of the object better than the method of Soltani et al. This is
because of the fusion of features across multi-scale layers.
Second, our method was better at preserving the thin parts of
the object. The method of Soltani et al. could not reconstruct
the thin parts of the object in most cases. We designed our
network architecture to use features across multiple levels.
The features in upsampled layers are semantically stronger
than those in downsampled layers. Because of this, there
are many more meaningful features for both global and lo-
cal features. However, the features in upsampled layers are
weak in terms of localization. By contrast, the features in
downsampled layers are not as semantically strong as those
in upsampled layers, but they have better localization. By
associating semantically stronger features with weak local-
ization in upsampled layers with semantically weaker fea-
tures with strong localization in downsampled layers at each
level, the network can simultaneously learn both the overall
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Fig. 4 Qualitative results for successful cases. Comparison of 3D recon-
structed models and heatmaps between our proposed method and that of
Soltani et al. [6]. (a) Ground truth 3D model. (b) Reconstructed 3D model
using the proposed method. (c) Reconstructed 3D model using the method
of Soltani et al. [6]. (d) Depth map ground truth. (e) Heatmaps of the pro-
posed method. (f) Heatmaps of the method of Soltani et al. [6].

Fig. 5 Qualitative results for failed cases. Comparison of 3D recon-
structed models and heatmaps between our proposed method and that of
Soltani et al. [6]. (a) Ground truth 3D model. (b) Reconstructed 3D model
using the proposed method. (c) Reconstructed 3D model using the method
of Soltani et al. [6]. (d) Depth map ground truth. (e) Heatmaps of the pro-
posed method. (f) Heatmaps of the method of Soltani et al. [6].

shape and detailed parts of an object. These factors lead to
a much more complete reconstructed 3D model compared
with that resulting from the method of Soltani et al. By con-
trast, our method is not perfect. It failed to reconstruct un-
common and complex shapes, as shown in Fig. 5. This may

have been caused by a lack of training data. For example,
the topmost lamp in the figure had a particular shape that
was not included in the training data.

3.3 Quantitative Evaluation

In this section, we discuss our results quantitatively using
the mean intersection-over-union (IoU). We reconstructed
all the 3D models in the test dataset in point cloud form and
computed the IoU by converting the point clouds into 3D
voxels. We trained a neural network model on all 57 object
classes five times. In Table 1, we tabulate our results for
each class and compare them with those of the method of
Soltani et al. [6]. We also present the standard deviation for
each category over the five runs to indicate that the results
obtained were stable and not coincidental. Hence, the ta-
ble shows the mean IoU and its standard deviation. Note
that the average IoU was reported as 84.0 in [6]. How-
ever, after training and running it for five times using the
original source code provided by the authors, we achieved
an average IoU of 81.1. Therefore, we used this value as
our benchmark for the method of Soltani et al. [6]. Table 1
shows the best results for each method. The table shows
that our method outperformed the method of Soltani et al.
in 45 out of 57 categories. Our method performed better in
categories such as lamp, guitar, table, pistol, microphone,
and chair because most of the 3D models in those categories
contained thin structures, which gave a clear advantage to
our method. In particular, in the categories such as lamp,
bookshelf, camera, and vase, despite their complex shapes,
our method coped with the shape complexity better than the
method of Soltani et al. [6].

Additionally, to measure the significance of our pro-
posed method against that of the method of Soltani et al. [6],
we ran a statistical test: the Student’s T-test. The test pro-
duces a P-value; if the P-value is less than 0.05, this in-
dicates that the experiment is statistically significant. Our
experiment achieved a P-value of 0.0301, which proves that
our proposed method was statistically significant.

3.4 Limitation

Although our method improved the 3D reconstruction of the
overall shape, and also detailed parts, to a certain extent, it
did not perform well in categories such as knife, rocket, and
cap. These categories had simple-shaped objects, and most
of them looked similar to each other. Additionally, a weak-
ness of depth map-based 3D reconstruction is that it does not
capture thin parts of objects well; this claim was supported
in [7]. Despite the improvements made in the reconstruc-
tion of certain thin and detailed parts, the limitation of depth
map-based 3D reconstruction undermined the effectiveness
and capabilities of our method.

4. Conclusion

In this paper, we proposed a simple yet effective method
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Table 1 Comparison of the method of Soltani et al. [6] and our proposed
method. “#M” represents the number of models. “Accuracy ± SD” repre-
sents the accuracy in terms of IoU followed by its standard deviation value
over five runs. “Gain” represents the improved accuracy of our proposed
method against that of Soltani et al.

Category #M
Accuracy ± SD

Gain
Soltani [6] Ours

aeroplane 304 71.8 ±0.002 72.7 ±0.001 0.9
bag 8 78.8 ±0.006 80.6 ±0.008 1.8
basket 11 83.6 ±0.002 84.5 ±0.003 0.9
bathtub 62 87.3 ±0.006 88.3 ±0.002 1.0
bed 10 76.3 ±0.007 77.6 ±0.006 1.3
bench 132 78.1 ±0.007 78.6 ±0.001 0.5
bicycle 6 43.1 ±0.005 43.5 ±0.001 0.4
birdhouse 2 82.8 ±0.009 84.4 ±0.002 1.6
bookshelf 39 73.3 ±0.007 74.2 ±0.002 0.9
bottle 35 92.5 ±0.006 93.0 ±0.0008 0.5
bowl 13 93.5 ±0.005 93.9 ±0.002 0.4
bus 82 91.1 ±0.005 91.4 ±0.002 0.3
cabinet 115 89.2 ±0.011 91.1 ±0.001 1.9
camera 8 67.7 ±0.009 69.2 ±0.005 1.5
can 8 93.9 ±0.007 94.8 ±0.004 0.9
cap 3 81.1 ±0.023 77.6 ±0.003 −3.5
car 554 82.2 ±0.003 82.7 ±0.000 0.5
cellphone 45 91.8 ±0.005 92.3 ±0.005 0.5
chair 491 77.0 ±0.003 78.4 ±0.005 1.4
clock 40 79.8 ±0.009 79.6 ±0.006 −0.2
dishwasher 8 93.9 ±0.002 94.1 ±0.009 0.2
display 81 86.5 ±0.001 86.6 ±0.001 0.1
faucet 47 66.1 ±0.007 65.6 ±0.002 −0.5
filecabinet 18 91.9 ±0.007 91.8 ±0.008 −0.1
flowerpot 42 65.3 ±0.005 65.7 ±0.001 0.4
guitar 65 78.5 ±0.004 81.5 ±0.006 3.0
headphone 5 55.7 ±0.010 60.7 ±0.006 5.0
helmet 16 75.2 ±0.005 75.6 ±0.0008 0.4
keyboard 5 87.6 ±0.005 88.0 ±0.001 0.4
knife 42 80.4 ±0.025 78.0 ±0.006 −2.4
lamp 181 68.2 ±0.008 68.3 ±0.004 0.1
laptop 34 97.0 ±0.003 97.1 ±0.001 0.1
letterbox 7 71.2 ±0.008 70.0 ±0.017 −1.2
microphone 6 62.9 ±0.003 63.6 ±0.001 0.7
microwave 11 93.7 ±0.002 93.2 ±0.005 −0.5
motorcycle 28 75.7 ±0.006 75.4 ±0.002 −0.3
mug 17 84.3 ±0.002 84.3 ±0.003 0.0
piano 13 79.4 ±0.004 80.9 ±0.005 1.5
pillow 6 86.7 ±0.001 86.6 ±0.007 −0.1
pistol 19 84.9 ±0.004 85.4 ±0.001 0.5
printer 18 79.4 ±0.002 80.9 ±0.009 1.5
remote control 4 89.4 ±0.007 89.7 ±0.001 0.3
rifle 171 77.5 ±0.005 77.8 ±0.005 0.3
rocket 7 73.2 ±0.002 71.3 ±0.006 −1.9
ship 147 79.6 ±0.002 79.7 ±0.001 0.1
skateboard 18 80.7 ±0.005 81.4 ±0.001 0.7
sofa 242 87.1 ±0.003 87.5 ±0.001 0.4
speaker 121 84.2 ±0.002 84.4 ±0.0008 0.2
stove 8 88.5 ±0.002 91.1 ±0.004 2.6
table 652 84.8 ±0.002 85.2 ±0.0009 0.4
telephone 92 92.6 ±0.002 92.7 ±0.001 0.1
tower 12 76.6 ±0.004 76.2 ±0.001 −0.4
train 25 84.7 ±0.007 85.1 ±0.002 0.4
trashcan 28 85.3 ±0.002 85.4 ±0.0005 0.1
vase 38 82.4 ±0.003 83.2 ±0.004 0.8
vessel 85 81.5 ±0.01 80.6 ±0.004 −0.9
washing machine 17 92.4 ±0.003 92.7 ±0.002 0.3

Average 81.1 81.5 0.4

to improve the reconstruction of detailed parts of an object,
particularly thin parts. To enable the network to focus on
learning detailed parts in addition to the overall shape of the
object, we designed a network that uses multi-scale layers to
learn and merge features of different scales. We compared
our results with those of a state-of-the-art method (Soltani
et al. [6]) in both qualitative and quantitative evaluations.
Our results demonstrated that our method outperformed the
state-of-the-art method [6] in most cases and that they are
statistically significant. Our method improved the recon-
struction of thin parts of objects that, in most cases, could
not be reconstructed by the state-of-the-art method [6]. This
led to the improvement of accuracy. Our qualitative re-
sults also demonstrated that the 3D models reconstructed by
our method were more complete and resembled the ground
truth more than those reconstructed by the state-of-the-art
method [6].
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