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Abstract—The major drawback of deep learning (DL) algo-
rithms is the necessity of large and labeled data sets in order to
achieve peak performance. A DL technique that can overcome
this constraint is self-supervised learning, which is applied as non-
contrastive self-supervised learning (SSL) and contrastive self-
supervised learning (contrastive learning). This paper evaluates
a contrastive learning method, which is called simple framework
for contrastive learning of visual representations (SimCLR),
for the task of fine-grained reading detection. We employ in-
the-wild electrooculography (EOG) data sets that describe the
eye movement behaviors to evaluate the SimCLR method and
compare it against the SSL and pure supervised methods. The
results show a maximum performance gain of 3.02 and 3.96
percentage points compared to the SSL and pure supervised
methods, respectively, over an equal amount of training data. In
addition, the SimCLR method shows a data efficiency of about
80%. The obtained results show a direction for system designers
and researchers to handle the lack of large-sized labeled data
issues in developing DL models that help to improve user reading
habits through eye movement behaviors.

Index Terms—self-supervised learning, contrastive learning,
SimCLR, reading detection

I. INTRODUCTION

Classical machine learning algorithms suffer from poor

performance in handling high-dimensional data sets. In addi-

tion, noisy data, including that which is collected in-the-wild,

make the applicability of these algorithms inappropriate. An

increasingly popular algorithm is deep learning (DL), which

enables simultaneous feature extraction and model creation. It

has solved many challenges in various fields [1], [2]. Among

all these successes, the major drawback is that large-sized

labeled data sets are needed for pure supervised DL algorithms

to attain performance at the level of service that is desirable.

A large-sized labeled data set is always difficult to produce

because of labor, cost, and similar issues. Large-sized labeled

This work was supported in part by JST Trilateral AI Research
(JPMJCR20G3), JSPS Grant-in-Aid for Scientific Research (20H04213,
20KK0235).

data sets are therefore scarce, and it is necessary to devise

alternative strategies to handle such issues.

Researchers have employed different techniques, including

self-supervised learning [3], [4], to tackle the lack of large-

sized labeled data issues. Self-supervised learning works by

pre-training the model followed by supervised training for

the downstream task. Self-supervised learning is adopted

in two different ways, non-contrastive self-supervised learn-

ing (SSL) and contrastive self-supervised learning (contrastive

learning) [5]. In contrastive learning, data augmentation is

used to pre-train the model by employing unlabeled data by

calculating contrastive loss [6]. The simple framework for

contrastive learning of visual representations (SimCLR) [7] is

a contrastive learning method proposed in the computer vision

domain. In activity recognition, researchers have also adopted

the SimCLR method with effective performance for tackling

the lack of large-sized labeled data issues by employing simple

signal transformations for data augmentation [8], [9].

Previous work of SimCLR on activity recognition is within

the category of “physical activity recognition”, which means

recognizing human physical activities by employing sensors

that are worn on the body and producing data from physical

movement. Another activity recognition is “cognitive activity

recognition”, which is recognizing activities of a person that

are relating to the mental processes by capturing biological

signals [10]. Reading is one such cognitive activity.

In the cognitive activity recognition tasks which center

around reading analysis, such as reading detection, reading

quality classification, and read word count, the lack of large-

sized labeled data is also problematic because of privacy

and other issues in data recording. Researchers also made

steps to tackle such issues in reading analysis, including the

adoption of SSL [10]. However, we do not know the usefulness

of contrastive learning in this field and if different signal

transformations for data augmentation will be more effective.

To answer these questions, we take a fine-grained reading
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detection task that is the classification of the following four

classes: reading Japanese horizontal (JH), Japanese verti-

cal (JV), English (ENG) texts, and not reading (NR) anything,

as a surrogate task of reading analysis and evaluate the

SimCLR method employing seven signal transformations with

combinations of twos for data augmentation. The Japanese

writing system follows two conventions, horizontal and ver-

tical. The horizontal writing moves from left to right with

multiple downward rows, but there have no spaces between

words. On the other hand, the vertical writing moves from

top to bottom with multiple columns from right to left [11].

This fine-grained reading detection is very useful because

the classes JV, ENG, and JH suggest reading newspapers

or novels, technical materials, and other types of materials,

respectively. We evaluate the SimCLR method by employing

in-the-wild electrooculography (EOG) data sets that describe

the user eye movement behaviors and compare it against the

SSL and pure supervised (supervised) baseline methods.

The results show that the SimCLR method outperforms

the SSL and supervised baselines for a significant number of

signal transformation pairs for a wide range of 100% to 20% of

available labeled data. Moreover, the SimCLR method shows

a maximum performance gain of 3.02 and 3.96 percentage

points for an equal number of labeled data used compared to

the SSL and supervised baselines, respectively. The SimCLR

method also shows a data efficiency of about 80% against both

baselines. It means that the same performance was obtained for

the SimCLR method with 20% of the data and baselines with

100% of the data. The results will show directions to apply

contrastive learning to pursue the best performance based on

the amount of available labeled data that will make it practical

to get accurate user reading behaviors for giving feedback to

motivate and improve reading habits.

II. RELATED WORK

The self-supervised learning, devised to handle the lack of

large-sized labeled data issues, is an intermediate between

supervised and unsupervised learning that eliminates the need

for human interaction in generating labels [12], [13]. It draws

labels itself to formulate a pseudo task in non-contrastive and

contrastive ways [5]. In both techniques, the aim is to pre-

train the model by solving the pseudo task to learn data rep-

resentations. The non-contrastive technique arranges a pseudo

task such as classification by generating pseudo labels [4],

solving jigsaw puzzles [13], repairing images [14], and patch

alignment of images [15]. Lately, the contrastive learning [16],

[17] technique has attracted much attention by enhanced

performances. This technique teaches the model to identify

positive data samples, coming from similar distribution and

negative data samples, coming from dissimilar distribution.

The model, therefore, learns the features of the input data by

solving a contrastive pseudo task of maximizing agreement,

that is, minimizing the distance between positive data samples

and maximizing it for negative data samples [6].

Contrastive learning has been performed in several

ways [16], and recently, Chen et al. [7], [18] proposed a

contrastive learning framework called SimCLR in the com-

puter vision domain, and the authors reported a significant im-

provement against SSL and supervised pipelines. The SimCLR

method generates positive pairs from the same data samples

by applying data augmentation and then calculates contrastive

loss [6] in latent space by contrasting these augmented views

against other data samples. It trains the feature extractor to be

agnostic against the data augmentation. The SimCLR method

has also been explored in the physical activity recognition and

health by recent work [8], [9], [19], [20] using sensory data to

tackle the lack of large-sized labeled data issues where authors

employed signal transformations for data augmentation.

Researchers conducted reading analysis that gives us useful

information on reading behaviors for various purposes to assist

readers [21]–[23]. The lack of large-sized labeled data issues

in this field forces researchers to carry out most of the studies

by employing classical machine learning, except for a tiny

portion employing DL algorithms [24]. The application of SSL

for reading detection has shown ways to tackle the lack of

large-sized labeled data issues [10]. Contrastive learning shows

a potential solution to adopt DL in reading detection using

small-sized labeled data, but it has been as of yet unexplored.

This study, therefore, aimed to evaluate the SimCLR method

for reading detection.

III. METHOD

We evaluate the SimCLR method for reading detection, with

necessary changes for adoption, which consists of two steps:

SimCLR pre-training and target task training, as shown in

Fig. 1. Reading detection differentiates the periods of reading

and not reading. We implement the convectional reading

detection as a classification task where at first, we divide

the user activities into short data segments and then classify

them into pre-defined fine-grained classes. We design the fine-

grained classes as reading JH, JV, ENG texts, and NR.

The SimCLR pre-training, as shown in the upper section of

Fig. 1, is conducted using the unlabeled EOG data. SimCLR

introduces a constraint based on data augmentation applied

to unlabeled data; the training of SimCLR is based on the

constraint that the features extracted from two augmented data

originating from the same data should be similar, whereas

those originating from different data should be dissimilar.

Therefore, the unlabeled time-series EOG data is divided into

short data segments. The data segments are then grouped into

1024 sized batches. To each batch (b), we apply a pair of

signal transformations twice with different random parameters

to generate two slightly dissimilar copies (ḃ and b̈) of the

original batch. The augmented batches are fed to an encoder

that generates two output vectors (ḣ and ḧ) which are then

fed to a projection head that generates two feature vectors

(ż and z̈). From these two feature vectors, we calculate

NT-Xent contrastive loss [7] that maximizes the agreement,

maximizing the similarity between augmented data segments

originating from the same data segment and minimizing the

similarity between augmented data segments originating from

the different data segments.
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Fig. 1: The SimCLR method, which consists of the pre-training, comprises four basic components of data augmentation,

encoder, projection head, and maximizing agreement based on contrastive loss, followed by a target task training.

We use seven signal transformations [8], [10] to create

signal transformation pairs that are scaling: multiplied the data

segment values by a random number generated from a normal

distribution with mean 1 and standard deviation 0.1, noise

addition: added random Gaussian noise with mean 0 and stan-

dard deviation -0.05 to the data segment, negate: inverted the

data segment values by multiplying with -1, time-flip: reversed

the time direction of the entire data segment, channel shuffle:

randomly permuted the data segment channels, permutation:

applied random permutation along the time axis, and time-

warp: stretched and warped the data segment.

The encoder consists of four 1D CNN layers where the

number of filters in each CNN layer is 16, 32, 64, and

96, respectively, with a kernel size of 32, 24, 16, and 8,

respectively. Each CNN layer is followed by a dropout layer.

After the last dropout layer, we add a Global max-pooling

layer. The projection head consists of three dense layers with

128, 64, and 32 units, respectively. We use relu and Adam as

the activation function and optimizer, respectively. In Fig. 1,

we repeat the same encoder and projection head for better

understanding, although both share the same parameters.

After SimCLR pre-training, the next step is the target task

training, as shown in the lower section of Fig. 1. The pre-

trained encoder is fine-tuned and then re-trained by removing

the projection head and adding a classifier consisting of a

dense layer of 4 units with linear activation. We use segmented

labeled EOG data for the target task training. We use hyper-

parameters the same as the SimCLR pre-training.

IV. DATA SETS

We use eye movements data recorded employing an eye-

wear JINS-MEME glasses, as shown in Fig. 2. Although JINS-

MEME carries EOG, accelerometer, and gyroscope sensors,

we use data only for the EOG sensor that records data as

Fig. 2: JINS-MEME glasses, used for data recording, carry an

EOG sensor consisting of a bridge, left, and right electrodes.

two channels corresponding to the horizontal and vertical eye

movements. This is because preliminary experiments show

that using only eye movements data is sufficient to describe

user reading behaviors. We employ two data sets, namely the

labeled EOG data set and the unlabeled EOG data set.

The labeled EOG data set was prepared by Ishimaru et

al. [25] and also employed by Islam et al. [10]. This data set

consists of data for ten native Japanese university students who

wore the JINS-MEME glasses for two days (12 hours per day).

They read JH, JV, and ENG texts each for one hour per day,

and the remaining period did not read anything. Participants

also wore a front camera called the Narrative Clip to take

frontal images that were used for data labeling purposes. The

recorded EOG data were then pre-processed and divided into

data segments of 30 seconds (have 15 seconds overlap). The

dimension of each data segment is 3000 × 2. The number

of data segments for JH, JV, ENG, and NR classes is 5,792,

5,798, 5,340, and 32,708, respectively.

The unlabeled EOG data set, introduced by Islam et al. [10],
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was also recorded in the same way except for the collection

of the labels. This data set was recorded for a total of

52 participants. After pre-possessing the data in the above-

mentioned way, the total number of unlabeled EOG data

segments is 177,921. The labeled and unlabeled EOG data

sets were recorded under the in-the-wild condition.

V. EVALUATION AND RESULTS

A. Training and Evaluation Protocols

The performance evaluation includes the SimCLR pre-

training followed by target task training. In SimCLR pre-

training, we made a pool of seven signal transformations

as described in Section III and created a matrix of 7 × 7

possible signal transformation pairs. For each pair, we applied

two signal transformations sequentially, one after another,

to a data segment except for the case where the signal

transformation pair is created by repeating the same signal

transformation (diagonal) and, here, we applied it to a data

segment only once. We evaluated the SimCLR method for all

signal transformation pairs by employing each pair for pre-

training using the unlabeled EOG data and then generating the

target task model by re-training it using labeled EOG data.

We employ two baselines, SSL and supervised methods, to

measure the competence of the SimCLR method. For SSL,

we reproduced the results for the method described in [10]

using the same EOG data sets (unlabeled and labeled) and

signal transformations employed for the SimCLR method. We

generated a pseudo task (classification) and corresponding la-

bels by applying the signal transformations, where pre-training

was done by predicting the transformation applied to the data

segment instead of optimizing the contrastive objective as did

for the SimCLR method. We trained the model described for

SSL for the target task using the same labeled EOG data set

without any pre-training for the supervised baseline.
We removed the class imbalance in the labeled EOG data set

by downsampling the majority classes, with random selection,

to 5,340 samples (the smallest number) and the chance rate

in prediction being 25%. To evaluate the performance for a

wide range of available data, we changed the labeled training

data segments as 100% (all available), 50%, 20%, and 0.1%

training samples per class for the target task training. We

evaluated methods in a person independent way where the

model was trained using data from nine out of ten participants

and tested on the data from the remaining one. We employed

prediction accuracy as the evaluation metric.

B. SimCLR Outcomes
Table I reports the results obtained in accuracy (in percent-

age) for the SimCLR method. Table I(a)-(d) report the results

TABLE I: Prediction accuracy (in percentage) for 7× 7 signal transformation pairs for SimCLR method. The diagonal entries

correspond to using only a single transformation. The red (bold) and blue (italic) texts outperform both SSL and supervised

baselines, and only supervised baseline, respectively.
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n scale 57.95 59.45 56.47 56.43 60.38 58.24 58.30
noise 58.07 58.23 59.76 58.49 58.82 57.71 58.41

negate 59.70 59.01 57.16 57.14 57.43 57.69 58.69
time-flip 58.37 59.44 55.83 58.24 56.68 57.73 59.23

channel shuffle 57.85 56.86 56.01 59.66 57.57 58.64 59.48
permutation 58.59 57.67 57.81 57.47 58.73 58.56 57.45

time-warp 59.02 57.84 58.11 57.47 57.24 58.13 58.43

(b) 50% training samples per class
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n scale 56.51 57.82 56.26 57.54 58.14 57.72 59.10
noise 57.97 58.26 57.77 57.65 57.45 58.48 58.70

negate 58.18 58.22 56.76 56.63 57.74 58.22 58.48
time-flip 58.64 57.99 57.57 58.41 58.30 57.97 58.25

channel shuffle 57.00 57.32 56.60 57.69 58.33 58.47 58.45
permutation 58.22 57.58 58.59 57.91 58.57 58.10 57.76

time-warp 57.79 58.85 57.73 57.74 58.88 57.97 57.52

(c) 20% training samples per class

2nd transformation
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n scale 54.45 56.14 54.94 54.91 55.15 55.13 57.03
noise 55.62 55.64 56.00 55.16 55.99 56.83 56.07

negate 55.03 54.67 54.34 54.69 54.64 55.46 56.28
time-flip 54.44 55.96 53.08 55.71 53.80 56.03 55.75

channel shuffle 55.35 55.00 55.10 54.84 55.22 56.82 55.36
permutation 57.29 55.72 56.07 56.42 56.89 55.99 55.26

time-warp 55.68 55.71 56.73 55.53 56.68 56.55 56.24

(d) 0.1% training samples per class
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n scale 27.60 28.67 29.44 27.82 29.57 28.49 29.62
noise 30.56 29.21 28.19 29.56 27.48 30.16 28.23

negate 29.00 28.50 28.92 27.59 28.32 30.43 28.73
time-flip 28.25 27.90 28.89 27.60 27.92 28.90 28.39

channel shuffle 30.97 27.86 27.72 28.82 27.78 29.47 31.34
permutation 28.09 28.83 32.35 29.34 29.89 29.68 29.44

time-warp 30.07 29.58 29.52 28.04 30.74 29.16 28.43

TABLE II: Prediction accuracy (in percentage) for SSL and supervised baselines with SimCLR (max accuracy).

Method
Training samples per class

100% 50% 20% 0.1%
SimCLR (max accuracy) 60.38 59.10 57.29 32.35

SSL 57.36 57.06 55.28 40.57
Supervised 56.42 55.77 53.51 28.46
Chance rate 25.00 25.00 25.00 25.00
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for 100%, 50%, 20%, and 0.1% training samples per class,

respectively, for a batch size of 32 and a learning rate of

0.003. On the other hand, Table II reports the results of the

SSL and supervised baselines along with maximum SimCLR

outputs obtained. In Table I, the red (bold) and blue (italic)

texts mean that the SimCLR method outperforms both SSL

and supervised baselines, and only supervised baseline, respec-

tively. The results show that the SimCLR method outperforms

for a vast majority of signal transformation pairs employed for

data augmentation in SimCLR pre-training for a wide range

of 100%, 50%, and 20% training samples per class. On the

other hand, for a short-range around 0.1% training samples per

class, the SSL performed well, although the SimCLR method

outperformed the supervised baseline for a significant number

of signal transformation pairs.

The performance of the SimCLR method has a depen-

dency on the signal transformation pairs employed for data

augmentation in SimCLR pre-training and the number of

training samples per class in target task training. A closer

look shows that noise addition, permutation, and time-warp

signal transformations alongside other signal transformations

perform best for 100%, 50%, and 20% training samples per

class in terms of the number of outperforms. On the other

hand, only permutation alongside other signal transformations

performs best for 0.1% training samples per class. Another

key point is that, although the best performance is achieved

for the pair of different signal transformations, even the pair of

same signal transformation (diagonal) performed quite well.

The results show a path for system designers to select the

best model depending on the signal transformation pairs and

available training samples.

C. Study of Performance Gain and Data Efficiency

We also analyzed the performance gain and data efficiency

of the SimCLR method. The performance gain is calculated

as the difference of the outputs (accuracy) for the SimCLR

method and baselines. On the other hand, the data efficiency

means whether the SimCLR method performs well with fewer

training samples per class or not compared to the baselines that

we measured by setting performance gain as a parameter.

We calculated performance gain based on Table II and

reported in Table III. Table III(a) reports the performance

gain of the SimCLR method compared to the baselines when

an equal amount of data were employed for training both

methods; SimCLR and baseline. The results show a maximum

performance gain of 3.02 and 3.96 percentage points compared

to the SSL and supervised baselines, respectively. Table III(b)

reports the performance gain of the SimCLR method for

100%, 50%, 20%, and 0.1% training samples per class cases

compared to the baselines when the baseline method is trained

for 100% training samples per class. The results show an

almost equal performance when the SSL baseline and SimCLR

method are trained by employing 100% and 20% training

samples per class, respectively. This shows that the SimCLR

method is about 80% data efficient. On the other hand, a

performance gain of 0.87 is obtained when the supervised

baseline and SimCLR method are trained by employing 100%

and 20% training samples per class, respectively. This shows

that the SimCLR method is more than 80% data efficient.

This excellent performance gain and data efficiency demon-

strate that the SimCLR pre-training help in capturing discrim-

inative features that, in turn, help to achieve the best perfor-

mance in the target task by improving class-level recognition.

TABLE III: Performance gain of the SimCLR method calculated based on Table II.

(a) Performance gain when both SimCLR and baseline methods are
trained using an equal number of training samples per class.

training samples per class used
for both SimCLR and baseline
100% 50% 20% 0.1%

Baselines
SSL 3.02 2.04 2.01 -8.22

Supervised 3.96 3.33 3.78 3.89

(b) Performance gain when the SimCLR and baseline methods are
trained using different numbers of training samples per class and
only 100% training samples per class, respectively.

SimCLR
(training samples per class used)
100% 50% 20% 0.1%

Baselines
(training

samples per
class used)

SSL
100%

3.02 1.74 –0.07 –25.01

Supervised
100%

3.96 2.68 0.87 –24.07

TABLE IV: Effect of batch size and learning rate, where #Outperform represents the number of signal transformation pairs

for which the SimCLR method outperforms the SSL and supervised baselines.

(a) Effect of batch size

Data
size

Parameter
Batch size

16 24 32 64 128

100%
#Outperform 27 34 40 37 29
Max accuracy 58.88 59.90 60.38 59.73 59.27

50%
#Outperform 22 39 43 40 17
Max accuracy 58.48 58.91 59.10 58.77 58.15

20%
#Outperform 25 38 30 28 11
Max accuracy 57.00 56.76 57.29 57.16 56.09

0.1%
#Outperform 0 0 0 0 0
Max accuracy 33.08 32.74 32.35 30.78 30.78

(b) Effect of learning rate

Data
size

Parameter
Learning rate

0.0001 0.0005 0.001 0.002 0.003

100%
#Outperform 0 3 18 45 40
Max accuracy 57.13 58.09 58.42 59.85 60.38

50%
#Outperform 0 4 10 40 43
Max accuracy 55.91 57.42 57.49 58.83 59.10

20%
#Outperform 0 3 8 23 30
Max accuracy 53.22 56.27 56.19 56.65 57.29

0.1%
#Outperform 0 0 0 0 0
Max accuracy 27.25 28.57 29.42 31.15 32.35
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D. Study of Batch Size and Learning Rate Dependency

We also studied the effect of two hyperparameters of batch

size and learning rate for the SimCLR method. To explore

the sensitivity, we trained the SimCLR method for target

task with different batch sizes (for a learning rate of 0.003)

and learning rates (for a batch size of 32) with 100%, 50%,

20%, and 0.1% training samples per class. We evaluated the

SimCLR method against the following criteria; the number

of signal transformation pairs employed for pre-training for

which the SimCLR method outperformed the SSL and super-

vised baselines, and the maximum accuracy achieved among

all signal transformation pairs. Tables IV(a) and IV(b) report

the obtained results. The results show that the SimCLR method

is robust for a wide range of smaller batch sizes, although it

produces the best results with a batch size of 32. On the other

hand, the SimCLR method performs worst for low learning

rate and starts to improve by increasing it and produces the

best results with a learning rate of 0.003. Therefore, in general,

the SimCLR method performs well for smaller batch sizes and

larger learning rates.

VI. CONCLUSION

The SimCLR method, in recent studies, shows superior

performance in tackling the lack of large-sized labeled data

issues. This method is explored in various domains, including

physical activity recognition. This study is one of the first in

exploring the SimCLR method for a cognitive activity like

fine-grained reading detection for a large number of signal

transformation pairs compared to the SSL and supervised

baselines. The results show that the SimCLR method outper-

forms baselines for a vast majority of signal transformation

pairs for a wide range of available labeled training data.

The analysis also shows that the SimCLR method is able

to produce a similar performance to the baselines using only

20% of labeled training data that demonstrate an excellent

data efficiency and performance gain. In addition to these

results, the additional analysis carried out in this study shows

a direction to achieve the best performance by applying the

SimCLR method regardless of the available labeled training

data that constitute useful feedback for reading analysis.

Future work includes an investigation to check the effec-

tiveness and suitability of signal transformation in pre-training

using other combinations such as three transformations.
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