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PAPER

Learning Multi-Level Features for Improved 3D Reconstruction

Fairuz SAFWAN MAHAD†a), Nonmember, Masakazu IWAMURA†∗b), Senior Member,
and Koichi KISE†∗c), Fellow

SUMMARY 3D reconstruction methods using neural networks are
popular and have been studied extensively. However, the resulting models
typically lack detail, reducing the quality of the 3D reconstruction. This is
because the network is not designed to capture the fine details of the object.
Therefore, in this paper, we propose two networks designed to capture both
the coarse and fine details of the object to improve the reconstruction of the
detailed parts of the object. To accomplish this, we design two networks.
The first network uses a multi-scale architecture with skip connections to
associate and merge features from other levels. For the second network,
we design a multi-branch deep generative network that separately learns
the local features, generic features, and the intermediate features through
three different tailored components. In both network architectures, the prin-
ciple entails allowing the network to learn features at different levels that
can reconstruct the fine parts and the overall shape of the reconstructed 3D
model. We show that both of our methods outperformed state-of-the-art
approaches.
key words: computer vision, 3D reconstruction, deep learning, multi-view

1. Introduction

Three-dimensional (3D) reconstruction using RGB images
is a widely researched computer vision topic. 3D recon-
struction has a wide range of applications in various fields
including medical imaging [1], archaeology [2], and civil
engineering [3]–[5]. Current research typically addresses ei-
ther multi-view 3D reconstruction or single image 3D recon-
struction. One of the main differences between these two
topics is the number of viewpoints required. Convention-
ally, 3D reconstruction was performed with multiple images
taken from different viewpoints. With the surge of popular-
ity of neural networks, single image 3D reconstruction [6]–
[14] was introduced and quickly became a trend. However,
this comes with a limitation: single image 3D reconstruction
is an ill-posed problem. The convenience of obtaining just
one viewpoint for single image 3D reconstruction is tem-
pered by the reduced quality. This occurs because a 2D im-
age provides us with minimal information about a particular
object or scene, thereby forcing the network to compensate
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for the unobserved viewpoints by inferring shape from the
learned data. Thus, single image 3D reconstruction is appro-
priate in situations that do not require high-quality results.

Under certain circumstances, multi-view 3D recon-
struction produces better results than single image 3D re-
construction. There is a trade-off between the number of
viewpoints and the quality of the reconstructed 3D model:
more viewpoints attain a more accurate the reconstructed
3D model. Research addressing multi-view 3D reconstruc-
tion [15]–[18] is motivated by this tradeoff. Using multi-
ple 2D images theoretically yields better results than us-
ing a single 2D image to reconstruct a 3D model. How-
ever, reconstructing a highly accurate 3D model remains a
challenging task even with state-of-the-art multi-view 3D
reconstruction methods. Soltani et al. proposed a method
to reconstruct a high resolution 3D model using multiple
depth maps or silhouettes [18], which is shown to outper-
form other 3D reconstruction methods in terms of multi-
view point cloud-based methods [19]. However, similar to
most state-of-the-art single-image 3D reconstruction meth-
ods, the method proposed in [18] ignores an important as-
pect: the reconstruction of the detailed parts of the 3D mod-
els. In most cases, the method failed to reconstruct the fine
parts of the 3D model, as shown in Fig. 1. The fine parts are
either not reconstructed at all or only slightly reconstructed,
where the latter indicates incomplete or sparse reconstruc-
tion. Specifically, the method failed in reconstructing details
such as the legs of a chair and the handle and tip of a rifle.
Our research aims to improve reconstruction quality, with
a particular focus on reconstructing the detailed parts of the
3D models. This issue has typically been overlooked in most
single-image and multi-view 3D reconstruction methods.

In this paper, we propose a simple but effective ap-
proach to improve the reconstruction of the detailed parts
of 3D models using multiple viewpoints. To achieve this,
we propose two methods. Both of our proposed meth-
ods are based on the state-of-the-art [18]. One is a multi-
scale layered network involving a sequence of downsam-
pling and upsampling∗∗. The network architecture is based
on the pyramidal hierarchical-based network concept from
[22], originally designed for object detection. [22] builds
a multi-scale feature map where each feature map consists
of high-level semantic features with different spatial resolu-
tions. Leveraging the semantically strong features extracted

∗∗This approach is based on the method in [20], [21].
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Fig. 1 A comparison of the reconstructed 3D models achieved by our
proposed method 1, our proposed method 2, and state-of-the-art method
from Soltani et al. [18]. (a) Ground truth. (b) Proposed method 1. (c) Pro-
posed method 2. (d) Soltani et al. [18]. Our methods improve the recon-
struction of the detailed parts by using both local and generic features.

at different levels further improves the reconstruction quality
of the detailed parts of the 3D model. We demonstrate that
the mechanism of the pyramidal hierarchical-based network
is effective in extracting useful features at different scales
to enhance the quality of the reconstructed 3D model. Our
second network is a multi-branch deep generative network
with specifically designed components. We adopt the net-
work architecture concept from [23], which introduces the
use of multi-level features in their colorization network. In-
spired by [23], we include three components in the network:
global net, mid net, and low net. These different components
obtain features at different levels. The global net captures
generic features across the image, while the low net captures
local features. The mid net captures intermediate features
between the generic and local features. Concatenating all of
these features allows the network to learn the various useful
features obtained from different levels. This helps improve
the reconstruction of the detailed parts while preserving the
overall quality and shape, leading to increased overall accu-
racy.

Our contributions are listed below:

• We propose two different networks to improve the 3D
reconstruction quality.
• We introduce a modified version of a pyramidal

hierarchical-based network to the encoder.
• We introduce multiple network components with a

multi-branch VAE structure to learn features at differ-
ent levels.
• We improve the 3D reconstruction of details, especially

the thin/fine parts of the 3D model.

2. Related Work

We categorize 3D reconstruction methods into two types:
single image 3D reconstruction [6]–[14] and multi-view 3D

reconstruction [15]–[18].
Reconstructing 3D models with a single image has be-

come increasingly popular, and entails particular advantages
and disadvantages. It requires only a single image to recon-
struct a 3D model but results in reduced accuracy. This ap-
proach is trained with large-scale repositories of 3D CAD
models such as ShapeNet [24]. Using only a single view-
point forces the network to infer the unobserved viewpoints
by using learned information to estimate a complete but in-
accurate representation of the query image. [6]–[8], [11]
addressed some single-image 3D reconstruction problems,
but in most cases the overall shape of the reconstructed 3D
models does not resemble that of the intended query images.
In addition, this approach neglects the detailed parts of the
model, specifically the fine parts (e.g., the legs of a chair
or table, the spout and lever of a faucet) and thus precludes
successful reconstruction. Moreover, the reconstructed 3D
models have low resolution. [10], [25], [26] reconstruct
high-resolution 3D models in mesh representation and are
able to reconstruct the fine parts of the models. However,
the major drawback of this approach is that the quality and
accuracy of the final 3D reconstructed model relies heavily
on the initial model selection. Their methods involve select-
ing an initial 3D model before further reconstructing the ini-
tially selected model to obtain a final 3D model. However,
the method fails at reconstructing complex 3D models or 3D
models that do not share a similar shape to those within the
initial selection.

Multi-view 3D reconstruction methods use two to an
arbitrary number of viewpoints. More viewpoints offer more
information, resulting in a more accurate and complete 3D
reconstructed model. Choy et al. [15] and Kar et al. [16] pro-
duced 3D reconstructed models in the form of voxels but
with low resolution. Although voxel dimensions can be in-
creased, this also increases memory consumption. The im-
mense resource overhead makes it impractical to reconstruct
the detailed parts. Ji et al. [17] proposed an end-to-end learn-
ing framework based on a multi-view stereo method as in
[27]. It has similar limitations to [15], [16] because it recon-
structs 3D models in the form of voxels. Moreover, because
it is based on the conventional 3D reconstruction method,
it also inherits the original limitations, resulting in an in-
complete 3D reconstructed model. In contrast, Soltani et
al. [18] proposed a multi-view reconstruction method focus-
ing on synthesizing 3D shapes. However, in most cases, the
method failed to reconstruct the fine parts of the 3D model.
According to a recent survey paper [19], [18] outperformed
other 3D reconstruction methods in terms of multi-view
point clouds-based methods. For this reason, we specifi-
cally selected [18] for implementation purposes to show the
effectiveness of our proposed method.

3. Approach

3.1 Soltani’s Method [18]

Soltani et al. proposed a network with three different set-
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Fig. 2 The pipeline structure of the method proposed by Soltani et al. [18] nCh denotes the number
of channels, which is 74. FC denotes a fully-connected layer while Z is the latent variable. C denotes
“conditional”, but is not used in this paper.

tings. First, the encoder accepts either 20 depth maps or
20 silhouette images. Second, it can also accept 20 depth
maps or 20 silhouette images but randomly nullifies 15 to
18 images for each input model. Last, it can also work with
either a single depth map or silhouette image. The network
accepts either depth maps or silhouette images as input and
produces a set of 20 depth map images and 20 silhouette
images. The output from the network is a total of 40 im-
ages that are used to render a final 3D model. The 20 depth
map images are projected back into 3D space, creating an
initial 3D model. The 3D model is further refined by using
the silhouette images to filter outliers. According to their
paper, despite the easiest setting (i.e., the first), the detailed
parts in the reconstructed 3D models were unsuccessfully
recovered. Therefore, in this paper, we focus only on using
the first setting which is using 20 depth map images as the
input.

Figure 2 provides an overview of the pipeline proposed
by Soltani et al. The core of its network structure is a
deep generative network, using the variational autoencoder
(VAE) [28] with B-type ResNet blocks [29] for both its en-
coder and decoder, producing a high resolution 3D model.
However, its network is designed to only learn features at a
single level. Thus, it fails to reconstruct thin and fine parts
of the 3D models, resulting in an incomplete and inaccurate
3D model.

3.2 Proposed Method 1

Our first proposed method improves on Soltani et al. [18].
Although the latter method reconstructs a high-resolution
3D model, the network is designed for completion and gen-
eralization and only learns features at a single scale. This
results in a failure to reconstruct most of the detailed parts
of the 3D model. To enhance the quality of the reconstructed
3D model, our strategy focuses on capturing features re-
lated to small and thin parts of the object. This improves
the overall quality of the reconstructed 3D model. We up-
grade the encoder part of the VAE network structure of [18]
by implementing the multi-scale layered network with skip
connections, inspired by the method in [22], as shown in
Fig. 3. According to [22], the multi-scale upsampled lay-

Fig. 3 Proposed network architecture of Lin et al. [22]

Fig. 4 Network architecture of our proposed method 1.

ers are made up of semantically stronger features than the
downsampled layers, which is the main advantage of using
pyramidal-based networks. Figure 3 shows that [22] uses
every output level {P1, P2, P3, P4} to make predictions in-
dependently. Our proposed network architecture, shown in
Fig. 4, adapts a similar concept but with the following two
distinct differences.

1. [22] considers every output level {P1, P2, P3, P4} inde-
pendently, while our proposed network concatenates
the final feature maps {P2, P4}. This produces a fi-
nal merged feature map followed by a fully-connected
layer.

2. Our proposed network is implemented in the encoder
of the VAE structure.
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Table 1 Ablation study results for different final layers for proposed
method 1.

Combination of Layers Accuracy (%)
{P2} and {P4} (Proposed method 1) 81.5 ±0.0008
{P2} and {P3} 81.3 ±0.001
{P3} and {P4} 81.3 ±0.0006
{C2} and {C4} 81.1 ±0.0005
{C2} and {C3} 81.2 ±0.001
{C3} and {C4} 81.2 ±0.0005

3.2.1 Network Architecture

Figure 4 shows the network architecture of our first pro-
posed method, which we adapted from [22]. It features
bottom-up and top-down pathways with skip connections.
All of the blocks in both the bottom-up and top-down path-
ways are consist of ResNet blocks [29]. The network starts
with a bottom-up pathway by scaling down the input image
to feature maps of sizes {1102, 532, 252, 112, 42}, denoted as
{C0,C1,C2,C3,C4}, respectively. The bottom-up pathway
ends with layer C4.

The top-down pathway begins by first upsampling the
last layer (C4) back to a feature map of size 112. The layer
C3 (which has the same spatial size as the upsampled layer
from C4) from the bottom-up pathway is associated with the
upsampled layer using a 1x1 convolution. Similar to [22],
the features in the upsampled layer and the skip connection
layer are then concatenated, producing a feature map de-
noted as M3. We apply a 3x3 convolution to layer M3 as an
anti-aliasing measure to reduce the aliasing effect caused by
sampling the layers. This produces a final feature map for
this level, denoted as {P3}. We iterate until we obtain the
final features maps, denoted as {P2, P3, P4}. Note that {P4}
is the same layer as {C4}. Last, we concatenate the final fea-
ture maps {P2, P4} to produce a final merged feature map,
denoted as {F0}, followed by a fully connected layer. To
concatenate the final feature maps {P2} and {P4}, we further
downsample layer {P2} to match the size of layer {P4}. To
reduce the number of parameters, we disregard {P3} in the
final merged feature map. For the same reason, we do not
further upsample layer {P2} to a spatial size of {1102, 532}.
We implement our proposed network architecture only in
the encoder of the VAE structure of [18]. We used the same
decoder structure as [18].

The network in [18] can be trained either in an unsu-
pervised manner or conditionally. For our purpose, we train
our network using the unsupervised method. Therefore, we
use the same loss function as Eq. (1) in [18].

An ablation study was performed to underpin our se-
lection of final layers, which is {P2} and {P4}. Table 1 shows
the accuracy (average and standard deviation) for different
combinations of layers: {P2} and {P3}, and {P3} and {P4}.
These experiments were run five times. In addition, we also
examined layers in the bottom-up pathway. That is, {C2}
and {C4}, {C2} and {C3}, and {C3} and {C4}. These experi-
ments were run three times. The result shows that {P2} and
{P4} achieved the highest accuracy as compared to the other

Fig. 5 Proposed network architecture of Iizuka et al. [23]

Fig. 6 Encoder structure of our proposed method 2. nCh denotes the
number of channels, which is 74. FC denotes a fully-connected layer.

combinations of layers. Considering the standard deviation,
its difference is considered sufficient. Due to this, we se-
lected {P2} and {P4} as our final layers.

3.3 Proposed Method 2

Our second proposed method also improves on Soltani et
al. [18]. As with our first proposed method, we aim to im-
prove the 3D reconstruction accuracy by focusing on the re-
construction of the fine parts of the 3D model. This time, we
improve the VAE network structure used in [18] by adapting
the concept of the network structure from [23], as shown in
Fig. 5. Similar to [23], our proposed network architecture,
as shown in Fig. 6, comprises three components: the global
net, the mid net, and the low net. However, our proposed
network architecture differs from [23] in two distinct ways:

1. [23] implements a shared weight for the low net, where
the weights are passed onto the mid net and global
net in a separate branch. In contrast, we separate all
three components into different branches, as illustrated
in Fig. 6. The features of the global net, the mid net,
and the low net are then concatenated before further
processing with a fully-connected layer.

2. In contrast to [23], which exclusively uses 3x3 convo-
lutional kernels across all three components, the com-
ponents in our network architecture do not share the
same kernel size. Concatenating all of the features
from the three components allows the network to learn
features at different levels. This enables the network to
capture both coarse and fine details from each image.

Each component of the proposed method plays a vital
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role in extracting features at different levels: ranging from
local to generic features. The following paragraphs describe
the implementation details of each of the three components
of the proposed network architecture: the low, global, and
mid nets.

(1) Low net

The low net extracts local features directly from the input.
To extract local features, the low net uses a filter size of 2x2
pixels. The 2x2 filter allows the low net to learn local fea-
tures by capturing smaller details. We selected a 2x2 filter
instead of a 1x1 filter because the latter treats a single pixel
as a feature, thereby ignoring any information about neigh-
boring pixels.

(2) Global net

The purpose of the global net is to extract generic features
using a filter size of 5x5 pixels. Our preliminary experiment
shows that a filter larger than 5x5 degrades the accuracy.
In our case, a filter larger than 5x5 is unsuitable because it
extracts features that are too generic.

(3) Mid net

The purpose of the mid net is to obtain intermediate features
between the generic features and the local features with a
filter size of 3x3 pixels. Features from the mid net are con-
catenated with features from the global net and the low net.

We use this proposed architecture as the encoder and
reuse the same decoder as [18].

3.3.1 Roles of Features at Different Scale Levels

In Fig. 7, we illustrate how the local, intermediate, and
generic features contribute to reconstructing the different
parts of the image. The figure shows the estimated depth
map side-by-side with a heatmap generated by obtaining the
difference between the ground truth and the estimated depth
map. Seven dedicated networks were trained separately re-
sulting in seven different results (b) to (h). The first three
models are those trained individually, which are the low net
(b), mid net (c), and the global net (d). As described in
Sect. 3.3, these differences are in the size of the receptive
fields. Models (e), (f), (g), and (h) are variations acquired
by training several combinations of the three branch models
(b), (c), and (d). For example, model (e) is trained using a
combination of (b) and (c) and so on. Among them, Model
(h) is trained using a combination of (b), (c), and (d), which
is our proposed method 2. The extracted features from dif-
ferent scale levels affect the estimated depth map differently.
The heatmap in (b), representing the low net, shows that the
depth map is estimated on a lower level, only capturing a
rough shape of the gun. While the heatmap in (c), repre-
senting the mid net, estimates the stock (the rear part of the
gun) and also the magazine of the gun. This indicates that
the mid net learns the shape of the gun better than the low net
because the mid net operates on a higher level. The global
net (d), estimates the stock and also the muzzle (the tip) of

Fig. 7 A heatmap visualization of the depth map accuracies obtained us-
ing features at different scale levels. (a) represents the ground truth. (b)–(h)
represent the results of seven dedicated networks trained separately; they
represent all combinations of with/without the low, mid, and global nets.
Models (b), (c), and (d) solely use the low, mid, and global nets, respec-
tively. Models (e), (f), and (g) use two of them. Model (h) uses all three
networks, which is our proposed method 2. The heatmap shows the differ-
ence between the ground truth and the estimated depth map using features
from different scale levels. The white region shows the parts of the depth
map that were successfully estimated. The blue region shows the parts
where the estimation failed. The red region shows the parts outside of the
bounds as compared with the ground truth.

the gun. This demonstrates that by learning the generic fea-
tures, the global net better learns the overall shape of the
object than the mid net and the low net. The low net (b)
trained individually on its own does not show its effective-
ness. However, its effectiveness shines when paired with
other branches (c) and/or (d). Results from (e), (f), and (g)
show that combining at least two of the main models (b), (c),
and (d) yields a better result as compared to the main mod-
els trained individually. Result in (h) shows that combining
all main models (b), (c), and (d) yields an even better result
as compared to the others. For those who have an interest in
the quantitative comparison between the models (b), (c), and
(d), we report they achieved an accuracy of 80.8%, 80.8%,
and 80.9% in one run, respectively, following the manner of
Sect. 4.3.

3.3.2 Efficient Implementation

Using a multi-leveled network with three components cor-
responding various receptive fields increases the number of
parameters. In addition, the B-type residual blocks also sig-
nificantly increase the number of parameters. Therefore, to
suppress the effect of the increase in the number of parame-
ters on the computational cost, we implement a filter decom-
position. That is, instead of a 5x5 filter for the global net, we
use two 3x3 filters. Two 3x3 filters yield a similar result to
one 5x5 filter but are more computationally efficient. Two
3x3 filters have fewer weights but more layers, leading to
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more complex non-linear features.
To further reduce the computational cost, we imple-

ment a separable filter as proposed in [30]. Instead of a 3x3
filter for the mid net and global net, we further decompose
it into 3x1 and 1x3 filters. Thus, the global net has two layer
sets comprising 3x1 and 1x3 filters. Similarly, instead of a
2x2 filter for the low net, we use 2x1 and 1x2 filters. This
further reduces the computational cost from O(d2H’W’) to
O(2dH’W’), where H and W refers to the height and weight
of the output feature map, respectively [30].

4. Experiments

In this section, we evaluate our methods against the original
state-of-the-art method proposed by Soltani et al. [18]. We
present both qualitative and quantitative evaluations of our
methods.

4.1 Experimental Settings

We trained our model on the ShapeNet dataset [24]. The
ShapeNet dataset consists of 57 object categories spanning
a total of 56,652 3D models. To use the dataset for train-
ing, we rendered depth maps from all of the 3D models in
the dataset with fixed camera angles. The rendered size was
224 × 224 pixels. To evaluate our method against [18], we
used the same dataset distribution: 92.5% for training and
the remaining 7.5% for testing. We used the pre-trained
dataset, which was the exact model used to produce the
result in [18], along with their original source code. We
trained our model on a system using NVIDIA GeForce GTX
TITAN V.

4.2 Qualitative Evaluation

We demonstrate our results against Soltani et al. [18] in
Fig. 8. The 3D models were reconstructed for the test dataset
— the 7.5% that was not used for training. Figure 8 illus-
trates two main points. First, both of our methods better
capture the overall shape of the object compared with the
method of Soltani et al. This is attributed to the fusion of
features across multi-scale layers in our proposed method 1
and the merging of the local, intermediate, and generic fea-
tures in our proposed method 2. Second, our methods bet-
ter preserve the thin parts of the object. In most cases, the
method of Soltani et al. failed to reconstruct the thin parts of
objects.

We designed the network architecture of our proposed
method 1 to use features across multiple scale levels. The
features in upsampled layers are semantically stronger than
those in downsampled layers. Thus, upsampled layers pro-
vide meaningful information for both global and local fea-
tures. However, the features in upsampled layers are weak in
terms of localization. In contrast, the features in downsam-
pled layers are semantically weaker than those in upsampled
layers, but they have better localization. By associating the
semantically stronger features with weak localization (from

Fig. 8 Qualitative results for successful reconstructions. Comparison of
3D reconstructed models of our proposed method 1, proposed method 2,
and Soltani et al. [18]. (a) 3D model ground truth. (b) 3D model recon-
structed by proposed method 1. (c) 3D model reconstructed by proposed
method 2. (d) 3D model reconstructed by Soltani et al. [18].

the upsampled layers) with the semantically weaker features
with strong localization (from the downsampled layers) at
each level, the network simultaneously learns both the over-
all shape and detailed parts of an object. These factors lead
to a much more complete reconstructed 3D model compared
with that obtained by the method of Soltani et al.

We achieve a similar effect from the network archi-
tecture of our proposed method 2 by extracting the local,
intermediate, and generic features using three dedicated
branches. Merging all of these branches at the end of the
network fuses all of the feature maps, allowing the network
to learn both the overall shape and the detailed parts of an
object.

Because of these two main points, the 3D models
reconstructed by our methods are much more complete
and closer to the ground truth than those reconstructed by
Soltani et al. However, our method failed to reconstruct
complex shapes, as shown in Fig. 9. This may have been
caused by a lack of training data. For example, the topmost
lamp in the figure has a specific shape that was not present
in the training data.
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Fig. 9 Qualitative results for failed reconstructions. Comparison of 3D
reconstructed models of our proposed method 1, proposed method 2, and
Soltani et al. [18]. (a) 3D model ground truth. (b) 3D model reconstructed
by proposed method 1. (c) 3D model reconstructed by proposed method 2.
(d) 3D model reconstructed by Soltani et al. [18].

4.3 Quantitative Evaluation

In this section, we discuss our results quantitatively. We
evaluate our results by using the mean intersection-over-
union (IoU) along with the breakdown of each category. We
reconstructed all of the 3D models in the test dataset in point
cloud form and computed the IoU by converting the point
clouds into 3D voxels. We trained the neural network mod-
els on all 57 object classes five times. Table 2 lists our results
for each class and compares them with those of the method
of Soltani et al. [18]. We also present the standard deviation
for each category over the five runs to indicate that the re-
sults obtained were stable and not coincidental. Note that
the average IoU was reported as 84.0% in [18]. However,
after training and running it for five times using the orig-
inal source code provided by the authors, we achieved an
average IoU of 81.1%. Therefore, we used this value as our
benchmark for the method of Soltani et al. [18].

Table 2 shows the best results for each method. The ta-
ble shows that our proposed methods 1 and 2 outperformed

the method of Soltani et al. in 45 and 43 out of 57 categories,
respectively. Our methods performed better in categories
such as guitar, table, pistol, microphone, and chair because
most of the 3D models in those categories contained thin
structures, lending a clear advantage to our methods. In par-
ticular, in categories such as lamp, bookshelf, camera, and
vase, our method coped better with the shape complexity
than the method of Soltani et al. [18].

Additionally, to measure the significance of the evalu-
ations of our proposed methods against that of the method
of Soltani et al. [18], we ran a statistical test: the student’s
T-test to produce a P-value; a P-value of less than 0.05 indi-
cates that the experiment is statistically significant. Our ex-
periment obtained a P-value of 0.008 for proposed method 1
and a P-value of 0.023 for proposed method 2, proving that
our evaluation of our two proposed methods is statistically
significant.

4.4 Discussion

Both proposed methods utilize upsampling and downsam-
pling in order to extract and learn features at multi-scale
layers. However, a distinct difference between the two pro-
posed methods is that proposed method 1 utilizes skip con-
nections to associate features extracted from the bottom-up
layers to the top-down layers in conjunction with several
merging of layers. On the other hand, proposed method
2 features a much simpler architecture where features are
extracted by going through a series of downsampling (en-
coder) and upsampling (decoder) without any skip connec-
tion. The merging of layers from all three branches are only
done once right before the fully-connected layer. The quan-
titative evaluation in Table 2 revealed their similarity and
dissimilarity. The similarity appeared in the fact that their
gains had a high correlation of 0.90. This indicates that the
categories in which they excel and those in which they do
not excel are similar. However, the variances of the gains
show the dissimilarity: it was smaller (i.e., 1.47) in pro-
posed method 1 and larger (1.64) in proposed method 2.
This indicates that proposed method 1 is more stable than
proposed method 2. On the other hand, in some cases, pro-
posed method 2 can obtain a much better result than pro-
posed method 1, while in other cases proposed method 2
can obtain a much worse result than proposed method 1. For
example, the faucet, rifle, monitor, and chair in Fig. 8 show
that proposed method 2 reconstructed better than proposed
method 1.

Generally, in deep learning, features closer to the end
of the network are semantically stronger, while features
closer to the image source have high localization accuracy.
In proposed method 1, the skip connections associate the
semantically stronger features (features from upsampling)
with the highly accurate localized features (features from
downsampling). This explains why the 3D reconstructed
models are much more stable and consistent, especially in
dealing with thin and tight spots thus making it better suited
for objects that have thin and tight spots (such as bicycle and
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Table 2 Category-wise comparison between Soltani et al. [18] and our proposed methods 1 and 2
(PR1 and PR2). “#M” refers to the number of models. The columns labeled “Accuracy” for [18], PR1,
and PR2 represent the accuracy in terms of IoU followed by its standard deviation value. The columns
labeled “Gain” for PR1 and PR2 represent the difference between the IoU of PR1 and [18] and that
between PR2 and [18], respectively.

Category #M
Soltani [18] Proposed methods 1 Proposed methods 2

Accuracy (%) Accuracy (%) Gain Accuracy (%) Gain
aeroplane 304 71.8 ±0.002 72.7 ±0.001 0.9 72.7 ±0.001 0.9
bag 8 78.8 ±0.006 80.6 ±0.008 1.8 81.9 ±0.013 3.1
basket 11 83.6 ±0.002 84.5 ±0.003 0.9 84.1 ±0.001 0.5
bathtub 62 87.3 ±0.006 88.3 ±0.002 1.0 88.0 ±0.003 0.7
bed 10 76.3 ±0.007 77.6 ±0.006 1.3 77.7 ±0.001 1.4
bench 132 78.1 ±0.007 78.6 ±0.001 0.5 80.1 ±0.005 2.0
bicycle 6 43.1 ±0.005 43.5 ±0.001 0.4 43.0 ±0.002 −0.1
birdhouse 2 82.8 ±0.009 84.4 ±0.002 1.6 84.4 ±0.003 1.6
bookshelf 39 73.3 ±0.007 74.2 ±0.002 0.9 74.0 ±0.001 0.7
bottle 35 92.5 ±0.006 93.0 ±0.0008 0.5 92.8 ±0.0008 0.3
bowl 13 93.5 ±0.005 93.9 ±0.002 0.4 93.7 ±0.003 0.2
bus 82 91.1 ±0.005 91.4 ±0.002 0.3 91.5 ±0.001 0.4
cabinet 115 89.2 ±0.011 91.1 ±0.001 1.9 91.1 ±0.001 1.9
camera 8 67.7 ±0.009 69.2 ±0.005 1.5 68.5 ±0.002 0.8
can 8 93.9 ±0.007 94.8 ±0.004 0.9 94.2 ±0.003 0.3
cap 3 81.1 ±0.023 77.6 ±0.003 −3.5 76.9 ±0.003 −4.2
car 554 82.2 ±0.003 82.7 ±0.000 0.5 82.6 ±0.001 0.4
cellphone 45 91.8 ±0.005 92.3 ±0.005 0.5 91.8 ±0.001 0.0
chair 491 77.0 ±0.003 78.4 ±0.005 1.4 78.1 ±0.001 1.1
clock 40 79.8 ±0.009 79.6 ±0.006 −0.2 79.9 ±0.013 0.1
dishwasher 8 93.9 ±0.002 94.1 ±0.009 0.2 94.1 ±0.001 0.2
display 81 86.5 ±0.001 86.6 ±0.001 0.1 86.6 ±0.001 0.1
faucet 47 66.1 ±0.007 65.6 ±0.002 −0.5 66.1 ±0.012 0.0
filecabinet 18 91.9 ±0.007 91.8 ±0.008 −0.1 90.6 ±0.012 −1.3
flowerpot 42 65.3 ±0.005 65.7 ±0.001 0.4 65.6 ±0.001 0.3
guitar 65 78.5 ±0.004 81.5 ±0.006 3.0 81.4 ±0.001 2.9
headphone 5 55.7 ±0.010 60.7 ±0.006 5.0 59.1 ±0.013 3.4
helmet 16 75.2 ±0.005 75.6 ±0.0008 0.4 75.6 ±0.0008 0.4
keyboard 5 87.6 ±0.005 88.0 ±0.001 0.4 88.0 ±0.0007 0.4
knife 42 80.4 ±0.025 78.0 ±0.006 −2.4 77.9 ±0.002 −2.5
lamp 181 68.2 ±0.008 68.3 ±0.004 0.1 68.0 ±0.001 −0.2
laptop 34 97.0 ±0.003 97.1 ±0.001 0.1 97.1 ±0.003 0.1
letterbox 7 71.2 ±0.008 70.0 ±0.017 −1.2 70.6 ±0.012 −0.6
microphone 6 62.9 ±0.003 63.6 ±0.001 0.7 63.1 ±0.002 0.2
microwave 11 93.7 ±0.002 93.2 ±0.005 −0.5 92.9 ±0.004 −0.8
motorcycle 28 75.7 ±0.006 75.4 ±0.002 −0.3 74.8 ±0.002 −0.9
mug 17 84.3 ±0.002 84.3 ±0.003 0.0 84.3 ±0.002 0.0
piano 13 79.4 ±0.004 80.9 ±0.005 1.5 81.0 ±0.006 1.6
pillow 6 86.7 ±0.001 86.6 ±0.007 −0.1 87.3 ±0.014 0.6
pistol 19 84.9 ±0.004 85.4 ±0.001 0.5 85.2 ±0.002 0.3
printer 18 79.4 ±0.002 80.9 ±0.009 1.5 80.8 ±0.009 1.4
remote control 4 89.4 ±0.007 89.7 ±0.001 0.3 89.7 ±0.008 0.3
rifle 171 77.5 ±0.005 77.8 ±0.005 0.3 77.9 ±0.001 0.4
rocket 7 73.2 ±0.002 71.3 ±0.006 −1.9 71.2 ±0.008 −2.0
ship 147 79.6 ±0.002 79.7 ±0.001 0.1 77.5 ±0.012 −2.1
skateboard 18 80.7 ±0.005 81.4 ±0.001 0.7 81.5 ±0.001 0.8
sofa 242 87.1 ±0.003 87.5 ±0.001 0.4 87.3 ±0.002 0.2
speaker 121 84.2 ±0.002 84.4 ±0.0008 0.2 84.4 ±0.001 0.2
stove 8 88.5 ±0.002 91.1 ±0.004 2.6 91.4 ±0.002 2.9
table 652 84.8 ±0.002 85.2 ±0.0009 0.4 85.2 ±0.001 0.4
telephone 92 92.6 ±0.002 92.7 ±0.001 0.1 92.7 ±0.001 0.1
tower 12 76.6 ±0.004 76.2 ±0.001 −0.4 76.3 ±0.002 −0.3
train 25 84.7 ±0.007 85.1 ±0.002 0.4 85.4 ±0.007 0.7
trashcan 28 85.3 ±0.002 85.4 ±0.0005 0.1 85.3 ±0.001 0.0
vase 38 82.4 ±0.003 83.2 ±0.004 0.8 83.1 ±0.003 0.7
vessel 85 81.5 ±0.01 80.6 ±0.004 −0.9 80.9 ±0.003 −0.6
washing machine 17 92.4 ±0.003 92.7 ±0.002 0.3 92.6 ±0.002 0.2

Average 81.1 81.5 0.4 81.4 0.3
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motorcycle). On the other hand, proposed method 2 follows
a different approach. Proposed method 2 does not utilize any
skip connections to associate the features. In fact, the con-
cept is to force the low net to learn the finer details of the
object while the mid and global net learns more global fea-
tures. This explains why proposed method 2 is not as good
as proposed method 1 in dealing with thin parts and tight
spots. However, in proposed method 2, the features from all
three branches at the last layers are combined, which con-
tains meaningful features from every aspect of the object.
This explains why the reconstructed 3D models in proposed
method 2 tend to be slightly denser than proposed method
1. This also shows that unlike proposed method 1, proposed
method 2 is better suited for solid-filled objects with lesser
or no gaps in between the object (such as bag, clock, or
faucet).

4.5 Limitations

Although our methods largely improved the 3D reconstruc-
tion of the overall shape, especially with respect to detailed
parts, they did not perform well in categories such as knife,
rocket, and cap. These categories contained simple object
shapes, with few differences between the samples. Our
methods may fail for such categories because the local fea-
tures may lose their effectiveness when there is little varia-
tion in shape, thereby jeopardizing the overall accuracy.

Furthermore, depth map-based 3D reconstruction is
known to be unsuitable for capturing thin parts of objects;
this claim was supported in [19]. Despite the improvements
made in the reconstruction of certain thin and detailed parts,
the fundamental limitations of depth map-based 3D recon-
struction undermined the effectiveness and capabilities of
our methods.

5. Conclusion

In this paper, we proposed two simple yet effective meth-
ods to improve the reconstruction of the detailed parts of
objects, especially thin parts. To learn the detailed parts
in addition to the overall shape of the object, we designed
two networks. The first network uses multi-scale layers to
learn and merge features of different scales. The second
network separately learns highly local features, intermediate
features, and generic features through tailored components.
We compared our results with those of the state-of-the-art
method proposed by Soltani et al. [18] using both qualita-
tive and quantitative evaluations. Our results demonstrate
that our methods outperformed the state-of-the-art [18] in
most cases, and we show that these results are statistically
significant. Our methods achieved improved reconstruction
accuracy. Our qualitative results illustrate that the 3D mod-
els reconstructed by our methods were more complete and
more closely resembled the ground truth than those recon-
structed by the state-of-the-art method [18].
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