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Abstract

In statistical pattern recognition, parameters of distribu-
tions are usually estimated from training samples. It is well
known that shortage of training samples causes estimation
errors which reduce recognition accuracy. By studying es-
timation errors of eigenvalues, various methods of avoiding
recognition accuracy reduction have been proposed. How-
ever, estimation errors of eigenvectors have not been con-
sidered enough. In this paper, we investigate estimation er-
rors of eigenvectors to show these errors are another factor
of recognition performance reduction. We propose a new
method for modifying eigenvalues in order to reduce bad
influence caused by estimation errors of eigenvectors. Ef-
fectiveness of the method is shown by experimental results.

1. Introduction

Statistical pattern recognition methods using the
quadratic discriminant function and the Mahalanobis dis-
tance are optimal in some conditions. These methods es
sentially need to know the true distributions of the patterns,
but it is usually impossible. Therefore, the parameters of
distribution are estimated from training samples. It is well
known that the parameters contain estimation errors when
training samples are not enough.

To overcome the degradation in performance, regular-
ized discriminant analysis [5] was proposed. As a method
to approximate the true distribution, Sakai et al.[2] proposed
a quadratic discriminant function with rectified eigenval-
ues which is called RQDF. They show a method to reduce
estimation errors of eigenvalues by extending Fukunaga’s
analysis[1] which derives the deviation of estimation errors
by perturbation theory.

Without estimating eigenvectors correctly, the effect of
correcting eigenvalues is limited. Therefore, estimation er-
rors of eigenvectors have to be corrected. However, the

methods to correct estimation errors of eigenvectors have
not been studied.

In this paper, first we investigate characteristics on es-
timation errors of eigenvectors experimentally. Examined
feature vectors are extracted from real character images and
artificial samples. As a result of the investigations, we show
the possibility that estimation errors reduce recognition per-
formance. In order to reduce bad influence caused by esti-
mation errors of eigenvectors, we propose a new method
to modify eigenvalues that compensates estimation errors
of eigenvectors. Effectiveness of the method is shown by
recognition experiments.
-

2. Estimation errors of eigenvectors

2.1. Evaluation method for errors

We investigate rotation angles of eigenvectors which
show how estimation errors of eigenvectors are. Rotation
angle of a vector can be measured by inner products of the
vector and other vectors. A matrixF (N1, N2) is defined as
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whered is the dimension of feature vector,N1 andN2 are

the numbers of training samples, andφ̂
N

k is thekth eigen-
vector estimated fromN training samples. Each diagonal
component of the matrix represents the size of the error.
Each off-diagonal componentF ij represents the length of

component of vector̂φ
N1

i to the direction of vector̂φ
N2

j , or

that of vectorφ̂
N2

j to the direction of vector̂φ
N1

i .
In the following sections, the absolute value of each

component of matrixF (N1, N2) is plotted in a three-
dimensional view.
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Figure 1. Errors of real character images.

2.2. Errors of real character images

Using real character images, the relationship between
the number of training samples and the estimation errors
of eigenvectors is investigated.

Digit samples of NIST Special Database 19 are used.
Each sample in the database is normalized nonlinearly[6]
to 64 pixels square, and then 196-dimensional Directional
Element Feature[4] is extracted.

The results of letter “0” are shown in Fig. 1. Each sub-
figure consists of two graphs from different viewpoints.
From the figures, estimation errors of eigenvectors are as-
certained and two kinds of tendencies can be observed:
(i)the errors become greater as the difference of sample
sizes |N1 − N2| becomes larger as shown in Fig. 1(a)
and Fig. 1(b), and (ii)the errors become greater as sample
sizesN1 andN2 become smaller as shown in Fig. 1(a) and
Fig. 1(c). These tendencies can be seen in the results of
other letters.

2.3. Errors of artificial samples

Artificial samples are prepared as follows. First, we nor-
malize real character images and extract feature vectors.
Mean vectorµ0 and covariance matrixΣ0 are calculated
from 36,000 samples of letter “0”. According to normal

distribution N(µ0,Σ0), artificial samples are created by
random numbers.

The results are shown in Fig. 2. The results are very
similar to the results of real character images.

Artificial samples exactly are distributed according to
normal distribution due to the process of construction. Esti-
mation errors of artificial samples have same tendencies as
that of real character images.

It is noted that the results of real character images and ar-
tificial samples indicate that estimation errors of eigenvec-
tors seem not to depend on a sample set itself. Therefore
the matrixF (N1, N2) calculated from artificial samples is
valid for all the samples of the same size to use error cor-
rection.

3. Reducing bad influence of estimation errors
of eigenvectors

We consider the influences of estimation errors of eigen-
vectors to recognition performance. Most statistical pattern
recognition methods use a covariance matrix, which can de-
compose into the eigenvalues and the eigenvectors. It can
be interpreted that eigenvectors are the directions to calcu-
late the distance or the similarity, while eigenvalues are the
weights corresponding to the directions. It seems that cor-
recting only estimation errors of eigenvalues does not take
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Figure 2. Errors of artificial samples.

much effect on the performance.
If we calculate the matrixF (N1, N2) exactly, we can

correct eigenvectors. However, calculatingF (N1, N2) is
too difficult because we can obtain the matrix only stochas-
tically and degree of freedom about eigenvectors is larger
than that of eigenvalues. Therefore, we will consider a mod-
ification of eigenvalues to compensate estimation errors of
eigenvectors.

3.1. A method of modifying eigenvalues

If N samples per category can be used for training, we
propose the following procedure to reduce bad influence
caused by estimation errors of eigenvectors.

1. The parameters of the distribution are estimated from
theseN samples.

2. Eigenvalues of the sample covariance matrix are cor-
rected by some known method for correcting estima-
tion errors of eigenvalues. The correctedkth eigen-
value is denoted asλ′

k.

3. Each corrected eigenvalueλ′
k is modified by the next

formula.

λ̃k =
d∑

i=1

{F (∞, N)ik}2
λ′

i. (2)

λ̃k is the kth eigenvalue which is modified by
this method and used for recognition. The matrix
F (∞, N) is estimated stochastically.

Eq. (2) is derived as follows. LetΣ be the true covari-
ance matrix and̂Σ be the sample covariance matrix esti-
mated fromN samples. The matrices can be decomposed
into the eigenvalues and the eigenvectors asΣ = ΦΛΦT

andΣ̂ = Φ̂Λ̂Φ̂
T

, whereΛ, Φ, Λ̂ andΦ̂ are denoted as

Λ = diag(λ1, λ2, · · · , λd) , (3)

Φ =
(
φ1 φ2 · · · φd

)
, (4)

Λ̂ = diag
(
λ̂1, λ̂2, · · · , λ̂d

)
, (5)

Φ̂ =
(
φ̂1 φ̂2 · · · φ̂d

)
. (6)

φk is the corresponding eigenvector to eigenvalueλk, and
φ̂k corresponds tôλk. It is assumed that the true eigen-
valuesΛ is estimated asΛ′ = diag(λ′

1, λ
′
2, · · · , λ′

d). If
we could know the true eigenvectorsΦ, the covariance
matrix can be estimated asΣest = ΦΛ′ΦT . However,
we haveΦ̂ instead ofΦ. Therefore, we desire to find
modified eigenvalues̃Λ = diag

(
λ̃1, λ̃2, · · · , λ̃d

)
to satisfy

Σest � Φ̂Λ̃Φ̂
T

. Then, following equation is obtained.



Φ̂Λ̃Φ̂
T � ΦΛ′ΦT

Λ̃ � Φ̂
T
ΦΛ′ΦT Φ̂

= F (∞, N)T Λ′F (∞, N) (7)

Eq. (2) is thekth diagonal component of Eq. (7).

4. Recognition experiments

We carry out experiments to show the ability of the pro-
posed method. Digit samples of NIST Special Database
19 are used for the experiments.1,000 samples are used
for testing. The other samples are used for training within
35,000 samples. The quadratic discriminant function[3] is
used. MatrixF (∞, N) is calculated from artificial samples.

Parameters of distributions are calculated from training
samples. The relationship between the number of train-
ing samples and recognition rates is observed. Recogni-
tion rates of three cases are compared. The first one is that
sample mean vectors, sample eigenvectors and eigenvalues
corrected by Sakai’s method are used for recognition. This
case means that only estimation errors of eigenvalues are
corrected, and it is labeled “Sakai’s Method.” The second
one is that sample mean vectors, sample eigenvectors and
modified eigenvalues by applying the proposed method are
used. This case means that estimation errors of eigenvalues
and eigenvectors are corrected, and it is labeled “Proposed
Method.” The difference of these recognition rates shows
the effectiveness of the proposed method. As the third case,
the result of normal quadratic discriminant function with
statistical parameters from samples are shown for reference.
It is labeled “Quadratic Discriminant Function.”

The results of the experiments are shown in Fig. 3. The
results shows following facts:

• Comparison of “Quadratic Discriminant Function”
and “Sakai’s Method” shows that correction of estima-
tion errors of eigenvalues is effective.

• Comparison of “Sakai’s Method” and “Proposed
Method” shows that the proposed method is effective.
Particularly, the proposed method is more effective
when sample size is small.

5. Conclusions

In this paper, we investigated the estimation errors of
eigenvectors and showed the possibility that estimation er-
rors of eigenvectors reduce recognition performance. And,
we proposed a method to reduce bad influence caused by

82

84

86

88

90

92

94

100 1000 10000 100000

R
ec

og
ni

tio
n 

R
at

e

Sample Size

Quadratic Discriminant Function
Sakai's Method
Proposed Method

Figure 3. Experimental results.

estimation errors of eigenvectors, and ascertained the effec-
tiveness of the method by the recognition experiments.

Estimation errors of eigenvalues have been considered
and researched so far. However, estimation errors of eigen-
vectors have not been considered. Our investigations in-
dicate the importance of considering estimation errors of
eigenvectors. The proposed method modifies eigenvalues to
compensate estimation errors of eigenvectors. The recogni-
tion experiments show the properness of the method. The
method is useful for the recognition applications which are
hard to get many samples because the effectiveness of the
method is noteworthy when sample size is small.

Obtaining matrixF (∞, N) theoretically is the task to be
solved.
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